
MoodView: An Advanced Graphical User Interface for OODBMSs

İsmailcem Budak ARPINAR Asuman DOĞAÇ Cem EVRENDİLEK
Software Research & Development Center

Scientific and Technical Research Council of Turkiye
Middle East Technical University

06531, Ankara TURKIYE

Abstract

OODBMSs need more than declarative query languages and programming languages as their interfaces since they are
designed and implemented for complex applications requiring more advanced and easy to use visual interfaces. We have
developed a complete programming environment for this purpose, called MoodView. MoodView translates all the user
actions performed through its graphical interface to SQL statements and therefore it can be ported onto any object-
oriented database systems using SQL with slight modifications.

MoodView provides the database programmer with tools and functionalities for every phase of object oriented database
application development. Current version of MoodView allows a database user to design, browse, and modify database
schema interactively and to display class inheritance hierarchy as a directed acyclic graph. MoodView can automatically
generate graphical displays for complex and multimedia database objects which can be updated through the object
browser. Furthermore, a database administration tool, a full screen text-editor, a SQL based query manager, and a
graphical indexing tool for the spatial data, i.e., R Trees are also implemented.

Keywords: graphical user interfaces, object-oriented databases.

1. INTRODUCTION

MoodView* is the graphical front end to MOOD [8]
which is a database system and an environment based
on the object paradigm. MOOD implementation is
realized on ESM (Exodus Storage Manager) [2] and has
an object-oriented data model. An SQL like
object-oriented query language called MOODSQL [8]
is the uniform interface in accessing the database.

The main goals of such an interface and major issues
for design and implementation of MoodView are:

Meeting OODBMS requirements: MoodView
provides an environment which conforms to the
requirements of object-oriented systems. It is a
sophisticated, but easy to use interface. It provides
visual access to the database without requiring expertise
from the database user.

* The source code of MoodView is available from
asuman@vm.cc.metu.edu.tr via e-mail.

Full use of graphics: MoodView is based on the
graphical direct manipulation paradigm and is
implemented in C++ using X Windows/Motif toolkit
which is a standard widget library on Unix machines.

Portability: MoodView produces SQL statements
corresponding to the actions performed by the database
user through the graphical user interface. Therefore,
MoodView can be ported onto any object oriented
systems using SQL with minor effort.

Compatibility: The community of database users need
standard ways of defining data. MoodView does not
ignore conventional interfaces such as C++ and SQL
and integrates them into the graphical user interface.
Class hierarchy of C++ code can be displayed visually
and C++ code can be generated from the visual
definitions.

Integrating query language into graphical user
interface: MoodView provides a SQL based query
formulation tool, namely MOODSQL, that the user can
prepare her queries and receive results in a graphical

environment.

Database design: MoodView provides a database
browser to design, browse, and modify database schema
interactively and display class inheritance hierarchy as
a directed acyclic graph (dag).

Display generation for complex objects:MoodView
provides automatic display for the objects in the
database. These objects can have complex types or
contain multimedia data and can be edited.

All-object principle: All the information maintained by
MoodView is stored in the database catalog through the
system defined classes. MoodView actions are
performed through execution of the methods by the
MOOD Kernel [8] on these data.

Furthermore, a graphical indexing tool for the spatial
data and a database administration utility are also
implemented.

In this paper, we describe the current version of
MoodView, discuss the issues in the design and
implementation. Section 2 presents the related work on
OODBMS interfaces and gives a short description of
some of those interfaces. Section 3 contains a
simulation of a user session with MoodView and
section 4 describes the design and implementation of
MoodView.

2. RELATED WORK

Recently many OODBMSs with graphical user
interfaces have been developed :OdeView[3] of ODE,
DBDesigner [11] of ONTOS, andtools of O2 have
visual interactive schema designers and database
browsers. Furthermore, they provide various extensions.
DBDesigner can generate C++ header files from the
schema. OdeView and tools provide facilities for
browsing objects. Tools is a front-end graphical
programming environment, implemented as an O2
application and also contains a debugger.O2 look [4],
an interface generator tool is used to visualize, edit,
and walk through the database schema and instances.
Objectstore also has a browser and a debugger.
Gemstonehas a programming environment provided by
Smalltalk. Facekit of Cactis is a toolkit for designing
graphical interfaces to object-oriented database systems
[14].

Furthermore many research prototypes are also
available such asADAM, RIDL, SNAP [5], Gambit,
ISIS [10], DBDT, LID, SKI [13], and DDEW. Some

systems for constructing graphical user interfaces are
also available such asET++ [24], InterViews, MERCY,
and Ingrid. ObjectWorksandGraphTrace[15] are the
examples of tools for aiding object-oriented
programming.

There are research works to develop graphical query
languages as user interfaces to databases [3, 6, 7, 12,
18].

Many other interface systems are proposed [9, 16, 20,
21]: SIG [19], KIVIEW, GOOD [22], Object Display
Definition System, G+, GraphLog, andGIUKU [17] are
examples of these systems.

We benefited from previous studies on user interfaces
particularly from the ones implemented for the object-
oriented database systems. Our display model is mainly
inspired from the existing interfaces’ navigation
methods. But MoodView contributes to the research
and development efforts in this area in the following
respects: All tools for the management of data is
integrated into GUI. Database user can define data
through C++, SQL or MoodView and the definition can
be visually displayed and visually defined data can be
transformed to C++ code or SQL statements. The user
can query database through a traditional query language
SQL or through the graphical query facilities. Complex
operations on objects is possible such as creation,
deletion, update, projection, selection and automatic
display generation for complex and multimedia objects.
The user has various alternatives for managing data
within this sophisticated environment and one can
easily port it onto another OODBMS.

3. MoodView ENVIRONMENT

In this section we present a typical MoodView session
with the help of MoodView screens’ snapshots.

3.1. Initial Window and Starting the Server

Upon entering the programming environment, an initial
window that contains the icons for each of the
MoodView tools is displayed as shown in Figure 1(a).

Initial window contains a browser icon for both the
class hierarchy browser and the object browser, a query
icon for the query formulation tool and also an R Tree
icon for the graphical indexing tool.

3.2. Database Design and Schema Updates

A database schema in MOOD contains class types, their

(a) (b)

(c)

Figure 1. (a) Initial MoodView Window, (b) Data Defintion in C++,(c) Class Hierarchy Browser

methods and relationships between those classes. Their
inheritance relationships is represented as a dag and
MoodView uses a dag placement algorithm that
minimizes crossovers and makes drawings for graph
nodes [23].

3.3. Data Definition in C++

MoodView can display a class hierarchy defined in
C++. We have modified cfront of C++ translator such
that, when data is defined through C++, cfront extracts
the schema information and stores into the MOOD
catalog. MoodView uses the catalog information
maintained by the MOOD kernel and displays class
hierarchy graphically. Note that this provides for

extensibility to our system since any DDL can be
translated to corresponding C++ type definitions with
minimal effort. MoodView also can convert graphically
designed class hierarchy graph into C++ code.

Upon clicking on the browser icon in the initial
window, MoodView displays the class hierarchy
representing the database schema. All nodes
representing the classes have standard menus activated
by clicking on them. MoodView supports the primitive
actions on the class hierarchy graph such as adding a
new class, dropping an existing class, changing the
name of a class etc.

Figure 1(c) shows the inheritance graph for a sample

(a) (b)

(c)

Figure 2. (a) Method Presentation,(b) Class Presentation,(c) Class Designer

database that belongs to a vehicle dealer.

3.4. Class Presentation

Assume that the car dealer starts selling cars and wants
to extend his database to keep the information about
every type of car he sells. He also decides to design
"car class" as a specialization (subclass) of "vehicle
class".

The car dealer designs the car class as follows:

class Car
{

Type string;
Model integer;
Displacement integer;
Max_Output integer;
Max_Torque float;
Price integer;

Equipment_List List Equipment;
Photo Ref Photograph;

}

Figure 1(b) shows the definition of the car class in C++
language. Note that the Equipment_List and Photo
fields have complex types. Photo is a reference to a
system defined class Photograph. The car dealer can
add this new class to his database by selecting "Add
subclass" item from the standard menu of Vehicle class
presentation. This results in a pop-up template window
which represents the new class. Each MoodView class
presentation window contains a standard menu for
schema updates, class type updates and class methods
updates. MoodView class presentation shows a window
that contains fields for the name of the class, its type id
given by MOOD, its type constructor, superclasses,
subclasses, and public and private methods and also a
field that indicates if the class is a system or user

(a) (b)

Figure 3. (a) Generic Presentation For A Car Object in SID Mode,(b) Car Objects Displayed in MID Mode

defined class as shown in Figure 2(b).

3.4.1. Class Design

Class attributes can be updated by clicking on attributes
button. This is an entry point for a tool for designing
object-oriented data types. One can add, drop attributes,
change the name or the type of an attribute by using
this tool (Figure 2(c)).

It is also possible to dump such class definitions to
Unix files. At any time during the database design
process, user can abort the transaction using the Cancel
button on the presentation or commit the transaction
and add the newly created class to database schema by
clicking on Save button in the menu. After saving, the
new class appears immediately on the class hierarchy
window.

3.5. Method Presentation and Class Methods
Updates

Now suppose that the car dealer wants to calculate each
car’s price in Turkish Liras. He can write a private
method attached to the new class Car for the price
calculation. Each class presentation of MoodView
contains a menu for class methods’ updates. Supported

actions are adding a new method, dropping an existing
method, changing the name of a method, changing the
body and the parameters of a method. Class designer
can call up the standard menu of the Car class and
select the "Add Method" item.

A method template is used for the new method creation
as shown in Figure 2(a). Updates to existing method
bodies or creation of the new method bodies can be
done through MoodView text editor.

3.6. Object Browsing

A user can access database objects through the query
manager or through the object browser of MoodView.
MoodView allows complex operations against a set of
objects. These include creation, deletion, update and
automatic display of complex and multimedia objects,
and the invocation of methods. Projection, selection and
complex query specification can be done on the objects
through the SQL based query manager. Updates to
objects from query displays are not allowed in
MoodView.

3.6.1 Generic Object Presentations

Any complex type in MOOD can be created by using

basic types and recursive application of the type
constructors (such as set, list or ref). Therefore MOOD
objects constitute graphs connecting atoms and
constructors and these graphs can be cyclic and large.
MoodView has a generic display algorithm for
displaying these object graphs and walking through the
referenced objects. Referenced objects are represented
as the drawn buttons and items of set and list are
displayed in a scrolled window. Multimedia data such
as images in different formats is defined through the
system classes. As an example, the car presentation
shown in Figure 3(a) contains references to a list of
equipment objects and to the system defined
Photograph class.

3.6.2. Display Modes: SID / MID (Single Instance
Display / Multiple Instance Display)

We have two modes of displays for the objects of a
class: Single Instance Display and Multiple Instance
Display. MoodView can display a single object at a
time (Figure 3(a)) or multiple objects in a scrolled
window (Figure 3(b)). In the single instance window,
the objects of a class can be sequenced by clicking on
the arrow buttons. These modes are also used to display
complex objects. A list is displayed in the MID mode
whereas a set or ref is displayed in SID mode.

3.6.3. Updates to Object Presentations

Atomic types such as string or integer can be edited in
the text mode. Complex types have different update
semantics than the atomic types. A menu whose items
correspond the update selections is placed on the
widgets representing complex types. For example, the
user can remove one of the equipments from the
equipment list of the car or from the whole database by
selecting the corresponding items from the update menu
for the car object shown in Figure 3(a). Copy, paste
operations are also allowed for both atomic and
complex types. Query results can not be edited but one
can copy an object from query display and paste it to
the object browser. Dynamic type checking is
performed by MoodView to ensure the correctness of
updates.

3.6.4. Interactive Method Activation

Methods are attached to object presentations and can be
activated interactively. For example, the car dealer can
calculate the price of the car in Turkish Liras by
clicking on pencil button representing applicable
methods and selecting CalculatePrice from the menu.

3.7. Query Formulation

In MOOD, we have a uniform SQL-based interface in
accessing the database. Query manager provides a
query editor with facilities for accessing previous
queries in a session. Through queries, objects with
specific characteristics (selection) or selected portions
of the objects (projection) can be displayed graphically.
We are planning to implement an interactive query
language that supports fast and easy formulation of
object-oriented queries [6, 7, 12, 18]. This tool will
provide the graphical construction of query predicates.
Furthermore, a graphical query language to manipulate
spatial data i.e. maps is also under development.

4. DESIGN and IMPLEMENTATION

MOOD Kernel interprets SQL statements and provides
all the functions needed by MoodView to manage
schema and instance levels as shown in Figure 4.

Kernel functions are divided between a SQL Interpreter
and C++ compiler. The class methods compiled by C++
are used by the system through the Dynamic Function
Linker [8].

4.1. MOOD Catalog

Kernel also performs catalog management. The catalog
contains all of the information required to manage
schema through MoodView such as the definition of
classes, types, and member functions in a structure
similar to a compiler symbol table. In order to achieve
late binding at run time, it is necessary to carry compile
time information to run time. This is accomplished by
the use of the system defined classes MoodType,
MoodAttribute and MoodFunction. MoodType class
keeps track all the types used in the system.
MoodAttribute stores the information about the
attributes of these classes. The instances of the
MoodFunction class keeps information about the
member functions.

The design of MOOD Catalog makes MoodView
easily extendible, so it can be used in a straightforward
manner for new types and objects added to the MOOD.
For example, MoodView uses this persistent type
catalog to determine how an object of certain type is to
be displayed. So, MoodView can generate automatic
displays for any object in MOOD without requiring
help from the user.

Figure 4. Overall MOOD Structure

4.2. SQL Interface Between Kernel and MoodView

One of the our major design goals is to provide
portability for the graphical user interface. Therefore we
have chosen a standard communication protocol
between the database kernel and the graphical user
interface. We avoided low level operations to interact
with the database and all system specific operations are
pushed to the kernel side. All the database operations
performed by the user through MoodView are
converted to SQL statements and the interpretation of
SQL statements is performed by the kernel. SQL is a
very common language in the database world.
Therefore MoodView can be ported onto many database
systems having an object-oriented data model and an
SQL like query language. Some effort is needed
because our SQL has some differences from the
relational SQL because it contains object-oriented
features such as the path expressions and the type
constructors, i.e., set, list, ref.

MOOD has a client-server architecture. Both the kernel
and the MoodView are on the client side of the system
and the kernel is implemented as a collection of the
primitives for database operations compiled into a
shared library. Linking MoodView and the kernel
together results in an executable client code. All the

requests go to the server process (ESM) through a
Remote Procedure Call like mechanism. The overall
system structure is shown in Figure 4.

MOOD Kernel defines a class named as
MoodViewManager that contains one method for the
execution of SQL statements.

class MoodViewManager {
// Local variables of MoodView

.....
// Method for Query Execution

errorMessage executeQuery(.....);
}

Whenever a user action requires a database operation at
the schema or instance levels, MoodView passes the
corresponding SQL statements to the kernel through
executeQuery method. The function returns a message
indicating the success or failure of the operation. The
following examples are provided to clarify the
communication protocol between the kernel and
MoodView.

To create a new instance of the car class shown in
Figure 3(a), MoodView produces the following SQL
statement:

new Car < "Spring", 1993, 1400, 63, 10.5, 12000, {new Equipment

< "Radio-Tape", 250>},
, SELECT p

FROM Photograph p
WHERE p.name = "IMG_DIR/Spring_Photo" >

To delete an item from the equipment list of the car,
MoodView produces the following statement:

DELETE p[1]
FROM Car c, c.list p
WHERE c.name = "Spring";

4.3. Object Presentations

We have designed a cursor like mechanism which
exists commonly in RDBMSs for displaying objects [1].
MoodView produces SQL statements corresponding to
object requests from database through the object
browser and the query manager. It is the kernel’s
responsibility to identify type and value of an object in
the system at run-time using the MOOD Catalog. The
kernel gets the stored representation of the object from
the database and returns a pointer to a buffer area each
element of which specifies a name, a type and a value
of the object’s attributes as shown in the following
structures. MoodView synthesizes this information and
combines widgets to display an object on the screen.
Atomic types are displayed as the labeled text fields,
and referenced objects are represented as the drawn
buttons. Items of lists are displayed in a scrolled
window.

typedef enum (REAL, INTEGER, TEXT, SET, LIST, REF,
METHOD) TYPE;

class ATTRIBUTE {
public:

char name[MAX_ATTR_NAME_LEN];
TYPE attr_type;
int attr_width;
int attr_off;
int btree_avail;
IID index_id; };

class BULK_SCHEMA {
char name[MAX_STRING_LEN];
FID fid;
int rec_width;
BULK_TYPE object_type;
ATTRIBUTE attr[MAX_ARITY];
int cardinality; };

It is possible to sequence through the returned objects
using cursor primitives provided by the kernel. These
primitives are listed below.

int OpenCursor (BULK_SCHEMA *InFile, Cursor *OutCur);
int GetNextObject(Cursor *Cur, USERDESC *outdesc, char *Flag);
int GetPrevObject(Cursor *Cur, USERDESC *outdesc, char *Flag);
int GetLastObject(Cursor *Cur, USERDESC *outdesc, char *Flag);

REFERENCES

[1] "ORACLE RDBMS Database Administrator’s Guide, Version
6.0", Oracle Corporation, 1989.
[2] "Using the Exodus Storage Manager V2.1.1", June 1992.
[3] R. Agrawal, N. H. Gehani, J. Srinivasan, "OdeView: The
Graphical Interface to Ode", Proc. ACM-SIGMOD Int’l Conf. on
Management of Data, San Diego, California, 1990.
[4] P. Borras, J. C. Mamou, D. Plateau, B. Poyet, D. Tallot, "Building
User Interfaces for Database Applications: The O2 experience",
SIGMOD RECORD, Vol. 21, No. 1, March 1992.
[5] D. Bryce, R. Hull, "SNAP: A Graphics-based Schema Manager",
IEEE Conf. on Data Eng., 1986.
[6] M. P. Consens, I. F. Cruz, A. O. Mendelzon, "Visualizing Queries
and Querying Visualizations", SIGMOD RECORD, Vol.21, No. 1,
March 1992.
[7] I. F. Cruz, "DOODLE: A Visual Language for Object-Oriented
Databases", Proc. ACM-SIGMOD Int’l Conf. on Management of
Data, 1992.
[8] A. Dogac, B. Arpinar, C. Evrendilek, T. Okay, C. Ozkan, "METU
Object-Oriented DBMS" in Object-Oriented DBMSs, Springer Verlag
NATO-ASI Series, in press.
[9] B. B. Flynn, D. Maier, "Supporting Display Generation for
Complex Database Objects", SIGMOD RECORD, Vol.21, No. 1,
March 1992.
[10] K. J. Goldman, S. A. Goldman, P. C. Kanellakis, S. B. Zdonik,
"ISIS: Interface for a Semantic Information System", Proc. ACM-
SIGMOD Int’l Conf. on Management of Data, Austin, Texas, 1985.
[11] S. Hong, J. Duhl, C. Harris, "DBDesigner: A Tool for Object-
Oriented Database Applications", Journal of Database Administration,
Summer 1992.
[12] H. J. Kim, H. F. Korth, A. Silberschatz, "PICASSO: A Graphical
Query Language", Software Practice and Experience 18, 3(March
1988), 169-203.
[13] R. King, S. Melville, "Ski: A Semantics-Knowledgeable
Interface", Proc. of the 10th Int. Conf. on VLDB, Singapore, August,
1984.
[14] R. King, M. Novak, "FaceKit: A Database Interface Design
Toolkit", Proc. of the 5th Int. Conf. on VLDB, Amsterdam, 1989.
[15] M. F. Kleun, P. C. Ginarich, "GraphTrace - Understanding
Object-Oriented Systems Using Concurrently Animated Views",
OOPSLA’ 88 Conf. Proc., San Diego, California.
[16] J. A. Konstan, L. A. Rowe, "Developing a GUIDE Using Object-
Oriented Programming", OOPSLA’ 91 Conf. Proc., Phoenix, Arizona.
[17] M. Kuntz, "The Gist of GIUKU Graphical Interactive Intelligent
Utilities for Knowledgeable Users of Data Base Systems", SIGMOD
RECORD, Vol.21, No. 1, March 1992.
[18] M. Kuntz, R. Melchert, "Pasta-3’s Graphical Query Language:
Direct Manipulation, Cooperative Queries, Full Expressive Power",
Proc. of 15th Int. Conf. on VLDB, Amsterdam, The Netherlands,
1989.
[19] D. Maier, P. Nordquist , M. Grossman, "Displaying Database
Objects", Proc. 1st Int’l Conf. Expert Database Systems, April 1986.
[20] J. C. Mamou, C. B. Medeiros, "Interactive Manipulation of
Object-Oriented Views", Proc. of 7th Int. Conf. on Data Engineering,
1991.
[21] J. A. McDonald, A. Buja, "Painting Multiple Views of Complex
Objects", ECOOP/OOPSLA’ 90 Conf. Proc., Ottawa, Canada.
[22] J. Paredaens, J. V. Bussche, D. V. Gucht, V. Sarathy, L. Saxton,
"An Overview of GOOD", SIGMOD RECORD, Vol. 21, No. 1,
March 1992.
[23] K. Sugiyama, S. Tagawa, M. Toda, "Methods for Visual
Understanding of Hierarchical System Structures", IEEE Transactions
on Systems, Man ,and Cybernetics, Vol. Smc-11, No. 2, Feb. 1981.
[24] A. Weinand, E. Gamma, R. Marty, "ET++ - An Object-Oriented
Application Framework in C++", OOPSLA ’88 Conf. Proc., San
Diego, California.

