
FORMALIZATION OF WORKFLOWS AND CORRECTNESS ISSUES IN
THE PRESENCE OF CONCURRENCY

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

�ISMA�ILCEM BUDAK ARPINAR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

DOCTOR OF PHILOSOPHY

IN

THE DEPARTMENT OF COMPUTER ENGINEERING

NOVEMBER ����

Approval of the Graduate School of Natural and Applied Sciences�

Prof� Dr� Tayfur �Ozt�urk
Director

I certify that this thesis satis�es all the requirements as a thesis for the degree of
Doctor of Philosophy�

Prof� Dr� Fato	s Yarman

Vural

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate� in scope and quality� as a thesis for the degree of Doctor of Philosophy�

Prof� Dr� U�gur Hal
c

Co
Supervisor

Prof� Dr� Asuman Do�ga	c
Supervisor

Examining Committee Members

Prof� Dr� Asuman Do�ga	c

Prof� Dr� U�gur Hal
c

Assoc� Prof� Dr� �Ozg�ur Ulusoy

Assoc� Prof� Dr� �I� Hakk
 Toroslu

Assist� Prof� Dr� Ahmet Co	sar

ABSTRACT

FORMALIZATION OF WORKFLOWS AND CORRECTNESS ISSUES IN

THE PRESENCE OF CONCURRENCY

Arp
nar� �Isma�
lcem Budak

Ph�D�� Department of Computer Engineering

Supervisor� Prof� Dr� Asuman Do�ga	c

Co
Supervisor� Prof� Dr� U�gur Hal
c

November ����� ��� pages

In this thesis� main components of a work�ow system that are relevant to the

correctness in the presence of concurrency are formalized based on set theory and

graph theory� The formalization which constitutes the theoretical basis of the

correctness criterion provided can be summarized as follows�

� Activities of a work�ow are represented through a notation based on set

theory to make it possible to formalize the conceptual grouping of activities�

� Control
�ow is represented as a special graph based on this set de�nition�

and it includes serial composition� parallel composition� conditional branch

iii

ing� and nesting of individual activities and conceptual activities themselves�

� Data
�ow is represented as a directed acyclic graph in conformance with

the control
�ow graph�

The formalization of correctness of concurrently executing work�ow instances

is based on this framework by de�ning two categories of constraints on the work

�ow environment with which the work�ow instances and their activities interact�

These categories are�

� Basic constraints that specify the correct states of a work�ow environment�

� Inter
activity constraints that de�ne the semantic dependencies among ac

tivities such as an activity requiring the validity of a constraint that is set

or veri�ed by a preceding activity�

Basic constraints graph and inter
activity constraints graph which are in confor

mance with the control
�ow and data
�ow graphs are then de�ned to represent

these constraints� These graphs are used in formalizing the intervals among ac

tivities where an inter
activity constraint should be maintained and the intervals

where a basic constraint remains invalid�

A correctness criterion is de�ned for an interleaved execution of work�ow

instances using the constraints graphs� Two concurrency control mechanisms�

namely Constraint Based Concurrency Control technique and Constraint Locking

Concurrency Control technique are developed based on the correctness criterion�

The performance analysis shows the superiority of the proposed techniques� Other

possible approaches to the problem are also presented�

iv

Keywords� Work�ow Management System� Work�ow� Data
�ow� Control
�ow�

Set Theory� Graph Theory� Activity� Basic Constraint� Inter
activity Constraint�

Time Intervals� Correctness� Concurrency Control

v

�OZ

�IS	 AKIS	LARININ FORMAL�IZASYONU VE ES	ZAMANLILI�GIN

VARLI�GINDA �IS	 AKIS	I DO�GRULU�GUNUN SA�GLANMASI

Arp
nar� �Isma�
lcem Budak

Doktora� Bilgisayar M�uhendisli�gi B�ol�um�u

Tez Y�oneticisi� Prof� Dr� Asuman Do�ga	c

Ortak Tez Y�oneticisi� Prof� Dr� U�gur Hal
c

Kas
m ����� ��� sayfa

Bu tez kapsam
nda bir i	s ak
	s
 y�onetim sisteminin e	szamanl
l
�g
n varl
�g
nda do�gru

lukla ilgili ana unsurlar
n
n formalizasyonu� k�ume teorisi ve 	cizge teorisi kul

lan
larak yap
lm
	st
r� Tezde �onerilen do�gruluk kriterinin teorik taban
n
 olu	sturan

bu formalizasyon 	su 	sekilde �ozetlenebilir�

� Bir i	s ak
	s
n
n aktiviteleri k�ume teorisi tabanl
 bir notasyon kullan
larak

g�osterilmi	s ve b�oylelikle aktivitelerin kavramsal guruplamalar
n
n forma

lizasyonu m�umk�un olmu	stur�

� Kontrol
ak
	s
 bu k�ume tan
m
 �uzerinde �ozel bir 	cizge ile g�osterilmi	stir ve

vi

kontrol
ak
	s
 bireysel ve kavramsal aktivitelerin s
ral
 kompozisyonunu� pa

ralel kompozisyonunu� se	cimli dallanmalar
n
 ve i	c i	ce ge	cmelerini i	cermekte

dir�

� Veri
ak
	s
� kontrol
ak
	s
 	cizgesiyle uyumlu bir y�onl�u ve d�ong�us�uz 	cizgeyle

g�osterilmi	stir�

E	szamanl
 	cal
	san i	s ak
	slar
n
n do�grulu�gunun formalizasyonu yukar
da bahse

dilen 	cat
 �uzerine oturtulmu	stur ve bu formalizasyon� i	s ak
	slar
n
n ve bunlar
n

aktivitelerinin etkile	sti�gi i	s ak
	s
 ortam
 �uzerinde iki tip s
n
rlay
c
 tan
ml
yarak

ger	cekle	stirilmi	stir� Bu s
n
rlay
c
 tipleri 	sunlard
r�

� Bir i	s ak
	s
 ortam
n
n do�gru durumlar
n
 belirleyen temel s
n
rlay
c
lar�

� Aktiviteler aras
ndaki anlamsal ba�g
ml
l
klar
 tan
mlayan aktiviteler aras

s
n
rlay
c
lar� �orne�gin bir aktivitenin daha �onceki bir aktivite taraf
ndan

do�grulanan veya do�grulu�gu kontrol edilen bir s
n
rlay
c
n
n do�grulu�gunu

gerektirmesi gibi�

Yukar
da bahsedilen s
n
rlay
c
lar
 g�ostermek i	cin kontrol
ak
	s
 	cizgesi ve veri

ak
	s
 	cizgesi ile uyumlu temel s
n
rlay
c
lar 	cizgesi ve aktiviteler aras
 s
n
rlay
c
lar

	cizgesi tan
mlanm
	st
r� Bu 	cizgeler� bir aktiviteler aras
 s
n
rlay
c
n
n korunmas

gereken aktivite aral
klar
n
n ve bir temel s
n
rlay
c
n
n hangi aral
klarda yanl
	s

oldu�gunun formalizasyonunda kullan
lm
	st
r�

S
n
rlay
c
 	cizgeleri kullan
larak� e	szamanl
 	cal
	san i	s ak
	slar
 i	cin bir do�gruluk

kriteri tan
mlanm
	st
r� Bu do�gruluk kriteri kullan
larak� S
n
rlay
c
 Tabanl
 E	sza

manl
l
k Kontrol�u Tekni�gi ve S
n
rlay
c
 Kilitleme E	szamanl
l
k Kontrol�u Tekni�gi

vii

isimli mekanizmalar da geli	stirilmi	stir� Performans analizleri� �onerilen bu teknikle

rin �ust�unl�u�g�un�u ispat etmektedir� Tezde bahsedilen probleme y�onelik� m�umk�un

di�ger yakla	s
mlar da a	c
klanm
	st
r�

Anahtar Kelimeler� �I	s Ak
	s
 Y�onetim Sistemi� �I	s Ak
	s
� Veri Ak
	s
� Kontrol Ak
	s
�

K�ume Teorisi� C	 izge Teorisi� Aktivite� Temel S
n
rlay
c
� Aktiviteler Aras
 S
n
rla

y
c
� Zaman Aral
klar
� Do�gruluk� E	szamanl
l
k Kontrol�u

viii

To my wife� Sena� my son� �Omer� and my parents ���

ix

ACKNOWLEDGMENTS

The author would like to express his deepest gratitude to his supervisor Prof�

Dr� Asuman Do�ga	c and his co
supervisor Prof� Dr� U�gur Hal
c
 without whose

continuous guidance and encouragement this work could have never been possible�

They have supported the research� even when the author was not sure where it

was going� by patience� understanding and caring� The author thanks them

for teaching him about research and helping him to understand the process of

accomplishing it�

His special thanks are due to his wife Sena Arp
nar for her endless patience�

generous and unforgettable help� This thesis bene�ted much from her detailed

criticism and advice� More than anything else� she kept the author going� even

kept him amused� and tolerated his obsessions and varying tempers� Most espe

cially� the author would like to thank his son �Omer Arp
nar for his sensibility and

love�

The author also wishes to gratefully acknowledge other Ph�D� students P
nar

K�oksal� and Nesime Tatbul for their detailed comments on improving the quality

of the thesis�

At last� but not the least� the author wishes to thank to his father �Ilhan

x

Arp
nar� to his mother Nursen Arp
nar� to his father
in
law Melih Nural� to his

mother
in
law Saime Nural� to his brothers C	
nar� and Emre� to his brothers
in

law Yusuf� and Mustafa� to his sisters
in
law H�uma� and Feyza for their patience

and support during the preparation of this thesis� They believed in us� even if

they did not always understand what we are doing� they were understanding and

loving� They have supported us �nancially� emotionally and lovingly� These are

depts that can not be paid back�

Finally� it would be appreciated any comments the reader may o�er� Corre

spondence should be addressed to �Ismailcem Budak Arp
nar� Software Research

and Development Center� Department of Computer Engineering� Middle East

Technical University �O�D�T��U��� ������ Ankara� Turkey� Electronic mail should

be addressed to budak�srdc�metu�edu�tr�

xi

TABLE OF CONTENTS

ABSTRACT � iii

�OZ � vi

DEDICATON � ix

ACKNOWLEDGMENTS � x

TABLE OF CONTENTS � xii

LIST OF TABLES � xiv

LIST OF FIGURES � xv

CHAPTER

� INTRODUCTION �

��� Correctness Issues in WFMSs � � � � � � � � � � � � � � � � �

� RELATED WORK ��

��� Invariants of ConTract Model � � � � � � � � � � � � � � � � ��

��� Step Compatibility ��

��� Process Synchronization ��

��� Transaction Speci�cation and Management
Environment �TSME� ��

��� Spheres of Isolation� M
serializability� Consistency
Units ��

��� The Carnot Project ��

��� ADEPT ��

��� Semantics Based Concurrency Control � � � � � � � � � � � ��

��� Multilevel Transaction Frameworks � � � � � � � � � � � � � ��

���� Commercial and Prototype WFMSs � � � � � � � � � � � � ��

� A MOTIVATING EXAMPLE ��

xii

� FORMAL CHARACTERIZATION OF WORKFLOWS � � � � � � ��

� CORRECTNESS OF ACTIVITIES AND WORKFLOWS � � � � ��

� CONSTRAINT BASED CONCURRENCY CONTROL �CBCC�
MECHANISM ��

��� CBCC Algorithms ��

����� Algorithm for Activity Start � � � � � � � � � � � ��

����� Algorithm for Activity End � � � � � � � � � � � � ���

����� Algorithm For Activity Post
Processing � � � � � ���

����� E�ects of Uncertainty on the CBCC Mechanism ���

��� Correctness of the CBCC Mechanism � � � � � � � � � � � ���

��� Discussion ���

��� Deadlocks ���

��� Performance Analysis ���

� CONCLUSIONS AND THE FUTURE WORK � � � � � � � � � � ���

BIBLIOGRAPHY ���

APPENDICES ���

A NOMENCLATURE ���

VITA ���

xiii

LIST OF TABLES

��� Relations De�ned on Time Intervals� � � � � � � � � � � � � � � � � ��

��� The Lock Compatibility Table for Inter
activity and Basic Con

straints� ��

A�� Nomenclature� ���
A�� Nomenclature �Cont��� ���
A�� Nomenclature �Cont��� ���

xiv

LIST OF FIGURES

��� Order Processing Example� ��
��� Order Processing Example �Cont��� � � � � � � � � � � � � � � � � � ��
��� WarehouseAllocation and StockControl Work�ows� � � � � � � � � ��

��� A HyperSet� ��
��� A Nested HyperSet� ��
��� A HyperGraph� ��
��� A HyperNodeGraph� ��
��� A �
level HyperGraph� ��
��� Restriction of the HyperNodeGraph in Figure ��� to Node ��� � � ��
��� The Abstraction of Node �� in HyperNodeGraph of Figure ���� � � ��
��� A DAG Consistent with the HyperNodeGraph of Figure ���� � � � ��
��� A Labeled Split
Join HyperNodeDAG� � � � � � � � � � � � � � � � ��

��� Inter
activity Constraints Graph� � � � � � � � � � � � � � � � � � � ��
��� Relations Between Inter
activity� Basic� and Extensional Constraints� ��
��� Basic Constraints Graph� ��
��� A Complete Execution History of Work�ows� � � � � � � � � � � � � ��

��� Execution Model for Activities� ��
��� A Sample Generic Wait
for Graph� � � � � � � � � � � � � � � � � � ���
��� A Sample Phantom Wait
for Cycle� � � � � � � � � � � � � � � � � � ���
��� Addition of New Restrictions to Generic Wait
for Graph in Figure

���� ���
��� Average Response Times for Di�erent Maximum Number of Con

straints per Activity� ���
��� Average Response Times of CBCC and CLCC Mechanisms for

Di�erent Evaluation Costs per Activity� � � � � � � � � � � � � � � � ���

xv

CHAPTER �

INTRODUCTION

Today� economic imperatives are forcing enterprises to look for new information

technologies to streamline their business processes� Key requirements include

integrating heterogeneous information resources of an enterprise� and automat

ing mission
critical applications that access shared information resources� Many

of the activities in these enterprises are of long
duration and consist of multi

ple operations executed over �possibly� heterogeneous systems with very diverse

response times� As a consequence of these trends� Work�ow Management Sys

tems �WFMSs� are quickly becoming the technology of choice to implement large

and heterogeneous distributed execution environments where sets of interrelated

activities can be carried out in an e�cient and closely supervised fashion ����

There is also a standardization e�ort in this respect� The Work�ow Manage

ment Coalition �WfMC�� an industry consortium aims at a uni�ed terminology

and a standardization of key components of a work�ow management system�

The WfMC identi�ed a set of six primitives with which it is possible to describe

�

control
�ow and hence construct a work�ow speci�cation �����

A work�ow process is de�ned as a collection of processing steps �activities�

organized to accomplish some business processes� An activity can be performed

by one or more software systems or machines �e�g�� instruments or robots�� by

a person or a team� or a combination of these� A work�ow process contains a

collection of activities and de�nes the order of activity invocations or condition�s�

under which activities must be invoked �i�e�� control
�ow� and also data
�ow

between the activities� Activities within a work�ow can themselves again be a

work�ow� Furthermore� an activity may be further composed of several calls to

local systems �such as in multidatabases ���� ����� and this fact is hidden at the

work�ow level�

The activities could be transactional or non�transactional� Transactional ac

tivities are those that access data controlled by Resource Managers �RMs� with

transactional properties �i�e�� ACID�� These activities minimally support the

atomicity property and maximally support all ACID properties of traditional

transaction models ����� These activities typically include those that interact

with a DBMS by using Commit and Abort operations� stored procedures� and two

phase commit ��PC� activities� In addition� activities that use the XA
Protocol

���� based Remote Procedure Call �RPC� to communicate with transactional pro

cessing entities such as a TP
Monitor ���� ��� in a distributed environment can

also be included in this category �����

Non
transactional activities access data controlled by RMs without transac

tional properties� These non
transactional processing entities include �le systems�

humans� legacy systems� HTTP servers� word processors� and spreadsheets� Yet�

�

it may be possible to introduce some transactional properties to these systems�

for example by wrapping non
transactional RMs to provide transaction and con

currency control services� There is further work describing how to handle non

transactional activities in �����

��� Correctness Issues in WFMSs

As discussed brie�y in ����� the person who implements an activity is responsible

for ensuring that the activity produces correct results if it is executed alone� How

ever since work�ows are long
running processes� having the activities terminate

�e�g�� commit� within the scope of a work�ow instance is an accepted practice�

Thus the data modi�ed by these activities becomes accessible to the other activi

ties within the same work�ow instance as well as to the other work�ow instances

which may cause inconsistencies due to improper interleavings� Yet many scenar

ios in the operation of a work�ow system require the preservation of consistency

of at least some data items� Therefore a work�ow execution must address the

following two correctness concerns ����

�i� The correctness of concurrent executions of activities belonging to the same

work�ow instance�

�ii� The correctness of concurrent executions of activities belonging to di�erent

work�ow instances�

For example consider an Order Processing work�ow in a manufacturing enter

prise� In the processing of the Order Processing work�ow� raw material stock is

�

checked through a CheckStock activity to see whether there is enough raw mate

rial in the stock to process the order� If not� the missing raw materials are ordered

from external vendors and inserted into stock through an InsertStock activity� Yet

later in the process when the actual manufacturing is to start for this work�ow

instance there may not be enough raw material in the stock to process this order�

because a concurrently running instance of the same or other work�ows might

have updated the stock� Of course� executing all these activities within the scope

of a single transaction might have solved these problems but work�ow systems

are there to prevent the ine�ciency of long
running transactions�

Another example to the data inconsistency problems is as follows� Consider

the Withdraw�Deposit activities of a simple work�ow in a bank involving two

branches� Withdraw activity withdraws the given amount of money from an ac

count at a branch� and the Deposit adds this amount to an account at another

branch� Let us consider Audit activities of another work�ow which check the bal

ance of these accounts� If Withdraw�Deposit and Audit activities are interleaved

incorrectly Audit activities miss the money being transferred between the two

accounts�

The current state of the art for work�ows lacks a clear theoretical basis� cor

rectness criteria and support for consistency of concurrent work�ows to handle

such problems ����� In this thesis� exactly these issues are addressed� We provide

a theoretical basis for the formalization of work�ows� and de�ne a correctness

criterion for the consistency of concurrently executing work�ows based on this

formalization� and present concurrency control techniques to provide the correct

ness� A shorter version of this work is presented in ����

�

The main contributions of the thesis are as follows�

��� A work�ow in conformance with the control
�ow primitives of WfMC model

is formalized based on set theory and graph theory�

We start by de�ning a special set whose elements may also be sets� called a nested

hyperSet� and use this set in representing the conceptual groupings of activities

in a work�ow system� The control
�ow is imposed on this set by introducing

the related edges and the resulting graph is called hyperNodeGraph� Split and

join nodes are introduced into this graph from where control
�ow splits into mul

tiple branches and merges into a single �ow later respectively� Data
�ow in a

work�ow is represented through a simple directed acyclic graph which is in con

formance with the control
�ow graph� Having thus set the necessary background�

we provide a formal de�nition of a work�ow�

��� This formalization is used in de�ning a correctness criterion for concurrently

executing work�ows based on the semantic information available�

Work�ow activities access resources which denote the set of all objects constitut

ing the work�ow environment� We de�ne correct execution of activities in terms

of their input and output conditions� which are the sets of constraints on the

work�ow environment� An input condition may involve two types of constraints�

basic constraints that specify the correct states of a work�ow environment and

inter
activity constraints that de�ne the semantic dependencies between activi

ties� such as an activity requiring the validity of a constraint that is set or veri�ed

by a preceding activity� For example a basic constraint can state that the money

�

being transferred between two branches of a bank through Withdraw�Deposit ac

tivities should not be destroyed during this transfer� This basic constraint remains

invalid between the executions ofWithdraw and Deposit activities for obvious rea

sons� Furthermore� consider InsertStock activity in the manufacturing example�

Since the resulting amount of raw materials after the termination of InsertStock

must remain in the stock until the beginning of manufacturing process that or

dered it� this requirement is represented as an inter
activity constraint between

InsertStock and the activity which is responsible from actual manufacturing pro

cess�

The intervals among activities where an inter
activity constraint should be

maintained and the intervals where a basic constraint remains invalid are for

malized through the graphs corresponding to these constraints� These graphs

are then used in developing a correctness criterion for an interleaved execution

of work�ows which is formally represented through a complete execution history�

Simply stated� the correctness criterion requires two conditions to hold�

i� The inter
activity constraints should be preserved in the related intervals by

preventing the activities that invalidate these constraints from executing�

ii� The activities that require the correctness of related basic constraints should

be prevented from executing during the intervals where these constraints

do not hold�

��� The correctness techniques� namely Constraint Based Concurrency Control

�CBCC� technique� and Constraint Locking Concurrency Control �CLCC�

technique are developed based on this correctness criterion�

�

CBCC technique which is based on locking in conjunction with validation� con

trols activity interleavings in such a way that two conditions above hold� Note

that this locking di�ers from database locking fundamentally in a way that the

constraints rather than data items are locked� In this way� the disadvantages

of locking data items for long
duration transactions are avoided ����� The inter

activity constraints are locked during the time interval where they should remain

valid in the long
term mode� An activity that falsi�es these constraints acquire

a lock in the con�icting mode �i�e�� short
term mode�� Through these con�icting

locks activities that falsify inter
activity constraints are prevented from execut

ing� If more than one activity require the same inter
activity constraint to be true

at the overlapping time intervals� their locks do not con�ict� Similarly� activities

that falsify the same constraint at the overlapping time intervals do not con�ict

either� Long
term locks are released by successor activities although short
term

locks are released by the activities that acquire them� Thus these two con�icting

lock types are named according to the duration of the corresponding locks�

Some activities on the other hand may falsify inter
activity constraints de

pending on the instantiation of the variables in the constraints and in their pa

rameters� For the activities that may falsify inter
activity constraints� we prefer

to use an optimistic scheme rather than locking with the intention of increas

ing the performance� since there is a probability that the activity will not falsify

these constraints� If these constraints evaluate to true at the end of an activ

ity� the activity is allowed to terminate� otherwise it is aborted and resubmitted�

Continuing with the example provided� since raw materials may be withdrawn

from the stock by the concurrently executing WithdrawFromStock activities of

�

some other work�ows� the inter
activity constraint between InsertStock and the

manufacturing activity may be invalidated� To prevent this� InsertStock obtains

a long
term lock on this constraint which will be released by the manufacturing

activity and if a WithdrawFromStock activity is executed between them it goes

through a validation phase�

However� it is also possible to use a more conservative approach in which ac

tivities acquire locks on the inter
activity constraints they may falsify in addition

to the constraints they certainly falsify� We call this conservative technique based

solely on locking as Constraint Locking Concurrency Control �CLCC� technique�

For example� WithdrawFromStock activity can obtain a short
term lock on the

inter
activity constraint in CLCC technique instead of going through a validation

phase�

The basic constraints specify the correct states of a work�ow environment

but they can be invalidated by an activity to be revalidated later through an

activity or through a set of activities� The activities that require the validity of

these basic constraints should not be allowed to execute in the interval where

the basic constraints remain invalid� and for this purpose long
term locks are

placed on the basic constraints during these intervals by the activities that falsify

these constraints� On the other hand� the activities that require the validity of

the basic constraints acquire locks in the con�icting mode �short
term mode��

For example� Withdraw activity obtains a long
term lock on the basic constraint

which it falsi�es� and this lock is released after Deposit activity terminates� Since

and Audit activity needs a short
term lock on the same constraint� its execution

is prevented between Withdraw and Deposit activities� The short
term locks of

�

activities which require correctness of the same basic constraint at the overlapping

time intervals do not con�ict with each other� and the same is true for the long

term locks of activities which falsify the same basic constraint at the overlapping

time intervals�

��� A performance analysis of the CBCC and CLCC techniques is presented�

A performance comparison of the proposed techniques with some other approaches

to the problem is also presented� The performance analysis performed through

simulation indicates that our techniques result in better performance than the

others�

In the work presented in this thesis� semantic information about activities

and work�ow environment is used� In the case where this semantic information

is not available� activities should be treated as black boxes and since isolation

of a whole work�ow execution is unacceptable because of performance reasons�

smaller units of isolation should be discovered� The main reason for this is that

work�ow processes are generally long
duration� It is unacceptable in many work

�ow applications to schedule con�icting activities sequentially as for read and

write operations in database transactions ��� ���� Thus� serializability� as used

for database transactions� is too strict for most work�ow applications� However�

the individual activities of a work�ow are isolated by concurrency control mecha

nisms of local systems� and hence the main concern is to observe the concurrency

control requirements between these individual activities and satisfy these require

ments when required� These requirements may be determined by checking the

data and control
�ow dependencies between the activities where the semantic

�

information is not available� These dependencies are available at design
time�

and therefore spheres of isolations each of which includes a subset of activities

of a work�ow can be determined in advance and correctness of work�ows can

be guaranteed through the isolation of these spheres� The approaches that use

this idea ��� ��� ��� are explained in Chapter �� It should be noted that these

approaches are much more restrictive compared to the techniques presented in

this thesis which make use of semantic information�

After setting the research context in the �rst chapter� the thesis is organized

as follows� In Chapter �� the related work is given� In Chapter �� we present

a motivating example to explain main concepts of our approach and identify

the general work�ow features covered by our model� Chapter � provides formal

characterization of work�ows in terms of data and control
�ow dependencies�

Chapter � de�nes correctness of concurrently executing work�ows and activities�

In Chapter �� concurrency control techniques based on this correctness de�nition

are proposed� and the performance analysis of the techniques is given� Chapter

� gives concluding remarks and the future work�

��

CHAPTER �

RELATED WORK

There are some research dealing with the correctness problem of work�ows� but

neither a widely accepted correctness notion nor a correctness mechanism have

been reported in the literature� In the following� we con�ne ourselves to sum

marizing the related research in work�ow management systems and transaction

processing systems�

In ���� ���� predicates are de�ned on the database with which activities interact

and they are evaluated at the beginning and at the end of activities to meet

their isolation requirements� In ���� and ���� compatibility information between

individual activities and a sequence of activities are used respectively to provide

their correct interleavings� In ����� a toolkit approach is proposed to meet di�erent

isolation requirements of activities such as serializability and cooperation� In ����

���� ��� and ����� a subset of activities are grouped into an isolation unit� In

����� work�ows are treated as multidatabase transactions and a limited form of

correctness is de�ned� The work in ���� is related with the correctness issues for

��

dynamic changes to work�ow instances�

Although semantics based concurrency control mechanisms and multilevel

transaction frameworks do not directly cover work�ow correctness� they are re

lated to the approach proposed in this thesis� Semantics based concurrency con

trol mechanisms are mainly proposed to increase concurrency using transaction

and object semantics� And in spite of this research� most commercial WFMSs

provide very limited capabilities for correctness and concurrency control issues

����� In the following� the relevant research and concurrency control capabilities

of some commercial and prototype WFMSs are explained in detail�

��� Invariants of ConTract Model

In the ConTract model ���� ���� the user is given the sole responsibility for main

taining the consistency of the database with which activities interact� In ���� ����

authors state that in many cases it is su�cient to make sure that a certain tu

ple is not deleted� that a certain attribute value stays within a speci�ed range�

that there are no more than a certain number of certain type of tuples� etc� to

ensure correct execution of work�ows and a work�ow designer can specify these

constraints as invariants� Thus� in order for activities to work correctly� pred

icates named as entry and exit invariants are de�ned to hold on the database�

At run
time� these predicates are veri�ed before an activity is started and after

an activity is terminated respectively� If an exit invariant is true� the transac

tion which protects the activity is allowed to commit� If entry or exit invariant

evaluate to false� a con�ict resolution algorithm is executed and this may involve

changing values of objects in the predicates manually in such a way that they

��

are satis�ed� However� an inevitable result may be cancellation of activity and

compensation of some previously terminated activities�

��� Step Compatibility

In ����� semantic serializability of work�ows is proposed as the correctness crite

rion� A human expert declares a compatibility matrix for activities of a work�ow�

Compatibility of two activities means that the ordering of these activities in an

execution history is insigni�cant from an application point of view� If two ac

tivities are not de�ned as compatible they are in con�ict� An execution history

is semantically serializable if an equivalent serial execution exists with the same

ordering of con�icting activities� For example� RiskEvaluation and RiskUpdate

activities of di�erent Loan Request Processing work�ows can be de�ned as in con

�ict whereas two EnterDecision activities of di�erent work�ows can be de�ned as

compatible although these EnterDecision activities update the same data item�

Hence� RiskEvaluation and RiskUpdate activities of di�erent work�ows must

be executed serializable to ensure the consistency of banks total involvement�

In ����� the compatibility matrix is restricted to the activities of di�erent in

stances of the same work�ow type� e�g� compatibility matrix for the activities of

two Loan Request Processing work�ows is de�ned� But in real applications activ

ities of di�erent work�ow types can be executed concurrently and a compatibility

matrix should be de�ned for them� for example� between the activities of a Loan

Request Processing work�ow and activities of a Risk Management work�ow�

��

��� Process Synchronization

In ���� the authors propose to combine ideas from both the database and operating

system worlds to address isolation problem in work�ows� The consistency is

speci�ed in the same way as the compatibility relationships are expressed with the

added complexity of having to express compatibility relations between sequences

of activities instead of between individual activities� For instance� how di�erent

work�ow instances should be interleaved in the system is given as a matrix� The

main idea is based on signatures of work�ow instances that they leave on the

objects they access� This signature speci�es which other work�ows are allowed

to access the object� Hence� the scheduling is performed in a way resembling

operating system semaphores� As activities are executed� they set and reset

semaphores in the form of signatures� However� this approach lacks a formally

founded semantic for how interleaving matrix should be constructed to guarantee

correctness of work�ows�

��� Transaction Speci�cation and Management

Environment �TSME�

In TSME ���� using a transaction speci�cation language� correctness as well as

state dependencies can be speci�ed between the activities of work�ows� Dif

ferent correctness dependencies such as serializability� temporal� and cooperative

dependencies can be speci�ed� For example� for the concurrent execution of two

alternative Line Provisioning activities of a Provisioning and Billing work�ow

for a telecommunication application� the correctness criterion can be speci�ed as

��

serializability� or if only one of these activities is allowed to commit they may

use same lines and slots and then the correctness criterion can be speci�ed as

cooperative�

To de�ne con�icts� each object is associated with a con�ict table� Serialization

dependencies are speci�ed as acyclic serialization order dependencies between ac

tivities� Temporal order dependencies are speci�ed by giving speci�c serialization

orders between the activities� Cooperation between activities is provided by using

breakpoints or augmenting con�ict tables of shared objects� Two cooperating ac

tivities read and write speci�c objects without restrictions at breakpoints or some

activities are de�ned as non
con�icting on speci�c objects� As a summary� TSME

provides some facilities to provide classical isolation mechanisms for work�ows�

��	 Spheres of Isolation
 M�serializability
 Consistency

Units

In ���� activities are treated as black boxes and to determine concurrency con

trol requirements between activities� data and control
�ow dependencies between

them are analyzed at design
time� Using this information spheres of isolation�

each of which involves a subset of activities in a work�ow� are determined and the

notion of correctness is based on the isolation of these spheres� Furthermore� a

technique to handle correctness of hierarchically structured work�ows consisting

of compound activities is proposed in ����

In ���� ���� M�serializability is de�ned as a correctness criterion for concurrent

execution of work�ows� In this model� related activities of a work�ow are grouped

��

into execution�atomic units� M�serializability assumes that an activity involves a

single site and it requires that activities belonging to the same execution�atomic

unit of a work�ow have compatible serialization orders at all sites they access�

A similar approach is proposed in ����� In this work� a set of activities are

grouped into a consistency unit and traditional correctness techniques are used

to provide serializable execution of this unit�

��� The Carnot Project

In ��� ���� work�ows are treated as multidatabase transactions and a limited form

of correctness is de�ned� It is assumed that an activity executing at each of the

local database systems has a serialization event that determines its position in the

local serialization order� The correctness criterion requires a consistent ordering

on serialization events of activities belonging to a given work�ow� However�

serializability is too strict for most work�ow applications and relaxed correctness

criteria are essential in specifying and enforcing the correct work�ow process

executions�

��
 ADEPT

In ����� a formal graph
based work�ow model �ADEPT� is presented� However

this work is related with preserving structural correctness of running work�ow

instances when their structures are modi�ed� In ����� a correctness criterion

is used to determine whether a speci�c change can be applied to a particular

work�ow instance� If the correctness properties are violated either the change is

��

rejected or the correctness is restored by handling exceptions resulting from the

change�

��� Semantics Based Concurrency Control

Semantics based concurrency control protocols can be broadly classi�ed into three

categories depending on whether they are based upon the semantics of transac

tions or upon the semantics of objects or both as described in ���� Approaches

of Gray ����� Garcia
Molina ����� Lynch ����� Weikum ����� Beeri ����� Farrag and

Ozsu ���� can be classi�ed into �rst category� works of Harder ����� O�Neil �����

Schwarz and Spector ����� Korth and Speegle ���� ���� Herlihy ����� Weihl �����

Badrinath and Ramamritham ���� mainly fall into second category� The works in

the third category use the advantages of both approaches to increase concurrency�

In ���� three semantics based correctness criteria are proposed� Consistency� or

derability� and strong orderability� The �rst criterion is based solely on the user�s

speci�cations and admits nonserializable executions that are acceptable to the

users� The second criterion is a generalization of view serializability� and �nally

third criterion is a generalization of con�ict serializability� In ��� and ����� for

mal methods to decompose a transaction into smaller units using transaction

and object semantics are described� In ���� the notion of semantic histories and

successor sets are proposed to describe correct interleavings of these units �i�e��

steps�� At the step level� con�ict information between steps are used to provide

their isolation in terms of con�ict serializability� In ����� transaction semantics are

used to decompose transactions into steps and a concurrency control technique

is described to control step interleavings�

��

��� Multilevel Transaction Frameworks

Work�ows may contain a hierarchy of activities� Therefore we need to deal with

the concurrent executions of nested activities� In ���� a concurrency theory is pro

vided for nested transaction systems� In this theory� commutativity and pruning

concepts are used to prove the correctness of a concurrency control technique�

Principles and realization strategies of multilevel transaction management is de

scribed in ����� Since the approaches in ���� and ���� make use of transaction

semantics� they are also metioned in the previous section� In ���� we have devel

oped a theory for the serializability of nested transactions in multidatabases�

���� Commercial and Prototype WFMSs

Most commercial and prototype WFMSs provide limited capabilities for concur

rency control ����� XAIT�s InConcert ���� supports a form of check
in check
out

model which is a primitive way for concurrency control� Lotus Notes ���� allows a

user to update an object and create a new version of it� When very large amount

of objects are updated� this method is not feasible because keeping every version

of an updated object is very costly� Sta�ware ���� uses a pass
by
reference pass

by
value approach for concurrency control� Data items that can be shared among

multiple activities are passed by reference� i�e� activities access a centrally stored

data item using a pointer� possibly concurrently� Mentor ���� supports the dis

tributed execution of work�ows and uses a TP Monitor� namely Tuxedo to provide

atomicity of distributed transactions� The synchronization is provided by means

of update messages between work�ows at synchronization points�

��

CHAPTER �

A MOTIVATING EXAMPLE

In this chapter� an order processing example in a highly automated manufacturing

enterprise is provided through Figures ���� ���� and ���� This example is used

to illustrate the main concepts throughout the thesis� Modern manufacturing

systems are complex organizations consisting of several functional subsystems

such as processing� tooling� inventory� material handling and shop supporting�

each performing di�erent activities to achieve overall production goal� Since many

manufacturing activities demand an overwhelming volume of data processing and

communication� the e�ectiveness of production control depends on the quality of

data
�ow and control
�ow in the manufacturing system� To ensure e�ciency and

�exibility in a highly distributed manufacturing system� it is necessary to use a

WFMS to supervise data and control
�ow� In such an environment� work�ows

may involve tens of organizations within and outside the enterprise� hundreds of

humans or machines� several databases� and interconnected applications� Some

of the databases might jointly provide the required information for performing

��

DEFINE PROCESS OrderProcessing��
���
GetOrder�OUT productNo� OUT quantity� OUT dueDate� OUT orderNo�

OUT customerInfo�
EnterOrderInfo�IN productNo� IN quantity� IN dueDate� IN orderNo�
CheckBillofMaterial�IN productNo� OUT partList�
PAR AND �part � FOR EACH partList�

SERIAL
DetermineRawMaterial�IN part�No� IN part�Quantity� OUT rawMaterial�

OUT required�
CheckStock�IN rawMaterial� IN required� OUT missing�
IF �missing � �� THEN

VendorOrder�IN rawMaterial� IN missing�
WithdrawFromStock�IN rawMaterial� IN required�
GetProcessPlan�IN part�No� OUT processPlan� OUT noofSteps�
i���
WHILE �i � noofSteps�

Assign�IN processPlan	i
�cellId� IN orderNo� IN part�No�
IN part�Quantity� IN rawMaterial� IN required�

END WHILE
END SERIAL

END PAR AND
AssembleProduct�IN productNo�
���
Billing�IN orderNo� IN productNo� IN quantity� IN customerInfo�
���

END PROCESS

Figure ���� Order Processing Example�

order processing and production activities of the enterprise� In the following�

we provide a simpli�ed example de�nition of an order processing work�ow and

some related work�ows in which the work�ow de�nition language of METUFlow�

��� �� ��� ��� ��� ��� ��� is used�

An incoming customer request causes a product order to be created and

inserted into an order entry database by GetOrder and EnterOrderInfo activi

ties respectively �Figure ����� The next step is to determine required parts to

assemble the ordered product by CheckBillofMaterial activity� A part is the

� METUFlow project has evolved to MARIFLOW project�

��

physical object which is fabricated in the manufacturing system� For each part�

DetermineRawMaterial activity is executed to �nd out the raw materials re

quired to manufacture that part� and a CheckStock activity is initiated afterwards

to check stock database for the availability of these raw materials� If the required

amounts of these raw materials do not exist in the stock� they should be ordered

from the external vendors through VendorOrder �Figure ����� VendorOrder itself

is another work�ow process� involving sending orders to vendors� accepting ship

ment of materials� reorganizing the stock and updating the available amount of

raw materials in the stock database� After all missing raw materials are obtained�

required raw materials to fabricate the part is withdrawn from the stock to be

sent to the manufacturing cells� This is accomplished by WithdrawFromStock ac

tivity by decrementing the available amount of the withdrawn raw material �i�e��

quantity�m�� in the stock database �Figure �����

The required steps to manufacture a part� and the manufacturing cells where

these steps are performed are obtained as a result of GetProcessPlan� GetPro�

cessPlan involves three activities to determine the number of cells to manufacture

a part� to choose these cells among all the available cells and to construct a plan

which determines the ordering among the cells etc� to perform manufacturing

�Figure ����� Actual manufacturing activity is initiated by assigning the work

to the corresponding cells for each step in Assign �Figure ����� Assign itself is a

complex work�ow which involves the real manufacturing process by using the raw

materials� Finally� manufactured parts are assembled to form the product that

the customer had ordered by the activity AssembleProduct� Further downstream

activities include testing� quality control� packaging� shipping� accounting� billing

��

DEFINE PROCESS VendorOrder�IN rawMaterial� IN missing�
���
SendOrder�IN rawMaterial� IN missing� OUT shipmentNo�
SuppliesArrival�IN shipmentNo�
InsertStock�IN rawMaterial� IN missing�

END PROCESS

DEFINE PROCESS GetProcessPlan�IN part�No� OUT processPlan� OUT noofSteps�
���
DetermineNoofCells�IN partNo� OUT cellNo�
SelectBestCells�IN cellNo� OUT quali�edCells�
ConstructProcessPlan�IN quali�edCells� OUT processPlan� OUT noofSteps�

END PROCESS

DEFINE PROCESS Billing�IN orderNo� IN productNo� IN quantity� IN customerInfo�
���
Payment�IN orderNo� IN productNo� IN quantity� IN customerInfo� OUT amount�

OUT paymentStatus�
IF �paymentStatus � unpaid� THEN

UpdateUnpaidBalance�IN customerInfo� IN amount� OUT unpaidBalance� OUT U�
IF�unpaidBalance � U� THEN
XOR
RejectShipping�IN orderNo�
MoreCredit�IN customerInfo� IN unpaidBalance� IN U�

END XOR
END IF

END PROCESS

Figure ���� Order Processing Example �Cont���

and customer service and some of these activities may involve external organi

zations such as subcontractors� banks� etc� These activities� except Billing� are

omitted here since they are not related with the issues dealt in this thesis� Billing

itself is another work�ow which is responsible for collecting bills of ordered prod

ucts �Figure ����� If a customer does not pay the bill� required actions are taken

in Billing work�ow� The details of Billing work�ow is explained in Chapter ��

We further consider two other work�ows de�ned in the system �Figure �����

WarehouseAllocation and StockControlwork�ows� WarehouseAllocationwork�ow

��

DEFINE PROCESS WarehouseAllocation��
���
GetAllocationOrder�OUT rawMaterial� OUT quantity� OUT source�

OUT destList�
RetrieveMaterial�IN rawMaterial� IN quantity� IN source�
PAR AND �destination � FOR EACH destList�

UpdateMaterialLocation�IN rawMaterial� IN quantity� IN destination�
END PAR AND

END PROCESS

DEFINE PROCESS StockControl�IN stockDBList�
���
WarehouseEvaluation�IN stockDBList� OUT materialSum�
PrintMaterialReport�IN materialSum�

END PROCESS

Figure ���� WarehouseAllocation and StockControl Work�ows�

distributes raw materials among di�erent warehouses and reallocates the mate

rials according to demand and delivery schedules� RetrieveMaterial retrieves the

given amount of raw material from the stock of the source warehouse and Up�

dateMaterialLocation transfers these raw materials to the stocks of the destination

warehouses in destList� StockControl work�ow checks the available raw materi

als of di�erent types in stocks of all warehouses through WarehouseEvaluation

activity and prints a stock report�

��

CHAPTER �

FORMAL CHARACTERIZATION OF

WORKFLOWS

In this thesis� we �rst attempt to formalize the correctness issues of work�ow

systems in the presence of concurrency and then provide a correctness technique

based on the theory developed� In order to formalize the correctness issues� we

�rst formalize the related concepts of work�ows�

Currently� speci�cation of work�ows is realized through the following types of

methods ����� Script languages� net
based methods� logic
based methods� alge

braic methods� and event
condition
action �ECA� rules� Work�ow speci�cations

based on script languages contain control
�ow and data
�ow constructs which are

speci�cally tailored to work�ow applications� They are easy to use and popular

in current WFMS products� Yet most script languages lack a formally founded

semantics�

Net
based methods provide graphical visualization of a work�ow speci�cation�

��

For example� many WFMS products provide means for graphical speci�cations

similar to state transition nets� In state transition nets� activities are represented

by nodes� and control
�ow is represented by edges� However� most net
based

methods also lack a formally founded semantics� The notable exceptions are state

charts ���� ��� ��� and Petri nets ���� ���� For example� a variant of Petri nets�

predicate transition nets� are used in a number of WFMS products and prototypes

���� ���� In this thesis� we have chosen a net
based method as a formal foundation

for work�ow speci�cation� Our approach has a formally founded semantics in

terms of graph and set theory and it provides for work�ow correctness as well as

work�ow speci�cation�

For a logic
based speci�cation� temporal logic is a commonly used method

����� e�g�� computational tree logic �CTL� ���� is used to de�ne control
�ow de

pendencies ���� Although temporal logic has a formal basis� a problem is the

execution of speci�cations in temporal logic if the expressive power is too high

����� Furthermore� it is hard to visualize speci�cations in temporal logic� Alge

braic methods have similar disadvantages with logic
based methods� ECA rules

are also used to specify the control
�ow between activities �e�g�� ������ Yet� the

graphical visualization of sets of ECA rules is a non
trivial task� As a �nal remark�

many of these methods do not have either a solid formal foundation or are often

not intuitive and hard to understand� Thus� a formal yet simple formalization of

work�ows is needed�

A work�ow process in the most general sense describes groupings of activi

ties that are executed sequentially or in parallel and de�nes data that may be

exchanged between these activities� In formalizing a work�ow process� we de�ne

��

special graphs to express this data and control
�ow information� We �rst de�ne

a hyperSet which represents the groupings of activities in a work�ow and con

stitutes the basis of the graph to de�ne the control
�ow� In order to introduce

control
�ow relations between activities� edges are introduced into a hyperSet and

then a graph which is named as a hyperNodeGraph is obtained� Data
�ow be

tween the activities is represented through a simple directed acyclic graph �DAG��

Since control
�ow and data
�ow should be in conformance with each other� con

sistency relation between the graphs that represent them is de�ned� In our model�

control
�ow is not permitted to contain cycles� therefore a hyperNodeGraph is

re�ned to a hyperNodeDAG� In addition� in order to de�ne activities from where

control
�ow splits into multiple branches and merges into a single �ow later� split

and join nodes are introduced into a hyperNodeDAG� resulting in a split
join

hyperNodeDAG�

Notice that� building the required properties of work�ows through graphs in

a top
down fashion with starting with the most general graph and re�ning it to

include further properties of work�ows� provides a formal and clear de�nition

of a work�ow� The solid mathematical and graph theory based foundation of

this formalization make it appropriate for developing a correctness theory and

a favorable reference model� It should be noted that� the primitives de�ned by

Work�ow Management Coalition �WfMC� ���� are taken into consideration in

our model� The WfMC identi�ed a set of six primitives �and
split� or
split� etc��

with which it is possible to describe control
�ow and hence construct a work�ow

speci�cation�

In the following� de�nition of a hyperSet that re�ects the groupings of activ

��

ities is provided� These groupings of activities are called as execution blocks or

conceptual activities� When proper control
�ow edges are imposed on this set�

the resulting graph shows the execution structure of the work�ow process�

De�nition ��� �HyperSet� A hyperSet S is a set whose elements are simple

elements or hyperelements which are simple sets or hyperSets� �

Notation� The notation Si � S is used to denote that Si is an element of

S� the notation S��i� is used to denote the element �i of S� size�S� is used

to denote the number of elements in S� simple�S� and hyper�S� are used to

denote the set of simple elements of S and the set of hyperelements of S re

spectively� Si� which may be a simple element or a hyperelement� is a subele�

ment of a hyperSet S� denoted as Si � S� i� Si � S or Si � Sj for some

Sj � S� The notation ��i��i������ik���ik� is used to denote a subelement which satis�es

��i��i������ik���ik� � ��i��i������ik��� � ��� � ��i��i�� � �i� � S� We shall drop parentheses

and comas between indexes when it is clear in the notation� The level of set S is

zero� the elements Si � S are called level k elements for which the parent is level

k�	 element� The set of base elements of hyperSet S� denoted as base�S�� is a �at

set which contains all the simple subelements of S� A hyperSet S is a �at set if it

has no hyperelement� that is any Si � S is a simple element�

This de�nition of a hyperSet is similar to cumulative type structure suggested

by mathematicians �����

Observe that elements in a hyperSet are not disjoint� In a work�ow system

��

��

��
��
��
�� ����������

����
����
����

a

d f
b

c

e
g
h

ε

ε3

22

S

ε2

ε23 ε= 32

33ε

Figure ���� A HyperSet�

however� each instantiation of the same activity type should be treated as a new

element at each invocation �e�g�� with di�erent set of parameter values�� Fur

thermore� participation of the same activity instance to more than one execution

block is similar to improper nesting of blocks in a procedural language� For these

reasons� a nested hyperSet with disjoint elements is de�ned� and it constitutes the

nodes of the hyperGraphs to be de�ned for representing di�erent components of

a work�ow�

De�nition ��	 �Nested HyperSet� A hyperSet S is nested if base�Si��base�Sj�

! � for any Si� Sj � S� where Si �� Sj or Sj �� Si� �

Introducing a nested hyperSet instead of using a �at set provides advantages

in specifying control
�ow dependencies and nesting of activities into conceptual

�i�e�� compound� activities� This point is clari�ed in the work�ow de�nition�

The following examples demonstrate a hyperSet and a nested hyperSet�

Example ��� Let S ! fa� fc� fb� dg� fd� fgg� fe� fd� fg� fg� hggg� elements of S

��

are �� ! a� �� ! fc� fb� dg� fd� fgg� �� ! fe� fd� fg� fg� hgg� subelements of S are

��� ! c� ��� ! fb� dg� ��� ! fd� fg� ��� ! e� ��� ! fd� fg� ��� ! fg� hg� ���� ! b�

���� ! d� ���� ! d� ���� ! f � ���� ! d� ���� ! f � ���� ! g� ���� ! h in addition

to its elements ��� ��� and ��� base�S� ! fa� b� c� d� e� f� g� hg� simple�S� ! ���

hyper�S� ! f��� ��g� size�S� ! �� size�base�S�� ! �� Figure ��� illustrates this

hyperSet� �

����
a

��
b

��
��
��
��

c

��
����

g
h����

��
��
��
����

S

d

f

ε

ε22

e

ε 2

ε3

33

Figure ���� A Nested HyperSet�

Example ��	 S ! fa� fc� fb� dgg� fe� f� fg� hggg is a nested hyperSet and it is

depicted in Figure ���� �

Having de�ned a nested hyperSet which represents individual and conceptual

activities of a work�ow� we can now de�ne other components of a work�ow� In

the de�nition of a work�ow we use four di�erent graphs� namely a control
�ow

graph� a data
�ow graph� and two constraints graphs� In a control
�ow graph�

precedence relations between individual and conceptual activities are provided�

e�g�� if an activity should be started after the termination of another activity this

is represented by a directed edge from the former activity to the latter activity

��

in the control
�ow graph� In order to represent these control
�ow dependencies�

we introduce edges into a nested hyperSet and thus obtain a graph which we call

as a hyperNodeGraph�

Data
�ow between individual activities occurs if output parameter of an ac

tivity is involved in the input parameter of a successor activity in the control
�ow�

In this way� a data computed by the former activity can be used by the latter

activity in its internal processing� Data
�ow is represented through a simple

directed acyclic graph �DAG� in the formalization�

In Chapter �� we develop a theory for the correctness of work�ows� In this

theory� an input condition for an activity to execute correctly is speci�ed in terms

of constraints on the work�ow environment with which a work�ow and its con

stituting activities interact� The intervals among activities where a constraint

should be maintained and intervals where a constraint �may� remains invalid

along a work�ow execution are formalized using two constraints graphs which

are �
level hyperGraphs� Although construction and usage of a �
level hyper

Graph are explained in detail in Chapter �� its de�nition is provided here for

the sake of completeness with other special graphs constituting a work�ow de�

nition� Furthermore� to keep the formalization at a general level we also provide

the de�nition of a hyperGraph�

De�nition ��
 �HyperGraph� HyperNodeGraph� 	�level HyperGraph�

A hyperGraph G ! �S�E� is a directed graph in which S is a hyperSet and edges

E are de�ned on S � S � fSa � Sag for any Sa � S� Notice that the graph itself

can be thought as a node at an abstract level� Any Sa � S is called a node and Sa

��

�
�
�
�

b
��
��
��
��

a

��
e

����
f

����
c

����
d

ε1 ε2

13ε = ε21

S

Figure ���� A HyperGraph�

� S is called a subnode� A hyperNodeGraph is a hyperGraph G ! �S�E�� where

S is a nested hyperSet� A
�level hyperGraph G ! �S�E� is a hyperGraph� where

any Sa � S satis�es Sa � base�S�� �

In the following� these de�nitions are clari�ed through examples�

Example ��
 Let G ! �S�E� be a hyperGraph� where S ! ffa� b� fc� dgg� ffc� dg�

e� cg� fg� and E ! fh��� ��i� h��� ��i� h���� ���i� h���� ���i� h���� ���i� h���� ���i� h�����

����i ! h����� ����ig� Figure ��� depicts this hyperGraph�

��
c
��
d

��
��
��
��

e

�
�
�
�
a
��
��
��
��

b
����

f

����
��
��
��
g h

ε3
ε4

ε41

S

Figure ���� A HyperNodeGraph�

Let G ! �S�E� be a hyperNodeGraph� where S ! fa� b� fc� d� eg� ffg� hg� fgg

��

��
c
��
d

����
a

e = ε3

ε2
ε4

����
f

����
��
��
��

��
��
��
��

g h

ε1

S

Figure ���� A �
level HyperGraph�

is a nested hyperSet and E ! fh��� ��i� h��� ��i� h��� ��i� h��� ��i� h���� ���i� h���� ���i�

h���� ���i� h����� ����ig� Figure ��� demonstrates this hyperNodeGraph�

Let G ! �S�E� be a �
level hyperGraph� where S ! ffa� fg� fc� dg� e� fg� h�

fgg� and E ! fh��� ��i� h��� ��i� h��� ���i� h���� ���ig� This graph is shown in Figure

���� �

Observe that the di�erence between a hyperGraph and hyperNodeGraph is

that a nested hyperSet constitutes the nodes of a hyperNodeGraph� Therefore�

only edges between the simple or hyperelements at the same level are possible�

In this way� when we use a hyperNodeGraph to specify control
�ow� anomalies

in precedence relations are prevented� For example� if control splits into several

�ows and these �ows are joined together within a hyperNode� control
�ow can

not jump into the middle of such �ows from outside of this hyperNode�

Notice that level of elements in S is not greater than � in a �
level hyperGraph

G ! �S�E�� i�e�� level of S is �� level of a Si � S is �� and level of a Sj � Si is ��

The following three de�nitions introduce various useful operations on a nested

hyperSet and a hyperNodeGraph� With these de�nitions it becomes possible

��

����
f

G()ε
4

����
��
��
��

hg

Figure ���� Restriction of the HyperNodeGraph in Figure ��� to Node ���

to focus on a hyperNode representing an execution block in a control
�ow and

conversely simplify it when its internals are not in the scope of our consideration�

In the following� restriction of a hyperNodeGraph to one of its nodes is de�ned�

This restriction results in a new hyperNodeGraph which involves the node itself�

its constituting simple and hyperNodes if they exist and edges between them�

The other nodes and edges in the hyperNodeGraph are omitted�

De�nition ��� �Restriction of a HyperNodeGraph to a Node� Given a

hyperNodeGraph G ! �S�E�� the restriction of G to a subelement Sa � S�

denoted as G�Sa�� is a hyperNodeGraph G�Sa� ! �Sa� ESa� such that for any

�Sb � Sa� Sc � Sa� and hSb� Sci � E� 	 hSb� Sci � ESa� �

Example ��� Figure ��� depicts the restriction of hyperNodeGraph in Figure

��� to node ��� �

In the following we de�ne abstraction of a subelement� A hyperelement is

replaced with a simple element to abstract it in a nested hyperSet� We use this

concept further for the abstraction of a node of a hyperNodeGraph�

��

De�nition ��
 �Abstraction of a Subelement in a Nested HyperSet�

Abstraction of a subelement Sa in a nested hyperSet S� denoted as S�Sa� is the

replacement of Sa with an abstract simple element sa in S� �

Example ��
 Let S ! fa� b� fc� d� fe� fgg� fg� hgg� Abstraction of S� ! fc� d� fe�

fgg in S results in S�S� ! fa� b� s�� fg� hgg� where s� is representing S�� �

Notice that abstraction of a simple element in a nested hyperSet causes no

change�

In the following� we provide the de�nition of abstraction of a node in a hyper

NodeGraph� This results in a new graph in which the node under consideration is

replaced with a simple node and every edge involving the former node is replaced

with a new edge involving the simple node� Furthermore� if there are internal

nodes and edges of the former node� they are discarded in the new graph� In this

way� when the internals of a hyperNode is immaterial and a hyperNodeGraph

should be simpli�ed to be processed more easily� required hyperNodes can be

abstracted� We use abstraction de�nition later in this chapter to re�ne a hyper

NodeGraph to another special graph� namely a split
join hyperNodeDAG which

actually represents the control
�ow in a work�ow�

De�nition ��� �Abstraction of a Node in a HyperNodeGraph� Abstraction

of a node Sa in a hyperNodeGraph G ! �S�E� is the hyperNodeGraph G�Sa !

�S�Sa� EG�Sa�� where EG�Sa is the set of edges constructed from E by replacing

Sa with sa in every edge involving Sa� and omitting any edge hSc� Sdi � E for Sc

��

��
c
��
d

��
��
��
��

e

�
�
�
�
a

ε4

ε4G/

��
��
��
��

����

ε3

b

Figure ���� The Abstraction of Node �� in HyperNodeGraph of Figure ����

� Sa� and Sd � Sa� �

Example ��� Figure ��� shows the abstraction of node �� in hyperNodeGraph

of Figure ���� �

In a work�ow� data
�ow should be in conformance with its control
�ow� that

is� there can be data
�ow between two activities only when there is a control

�ow between them� Therefore� a directed acyclic graph �DAG� which represents

data
�ow should be consistent with the hyperNodeGraph which represents corre

sponding control
�ow� Notice that� a DAG representing data
�ow involves subset

of activities constituting the base elements of corresponding hyperNodeGraph�

Informally� a DAG is said to be consistent with a hyperNodeGraph i� for any

edge between the two nodes of the DAG� there corresponds an edge between the

same nodes or hyperNodes that include them in the transitive closure of the hy

perNodeGraph� Transitive closure of a hyperNodeGraph G ! �S�E�� denoted as

G� ! �S�E��� can be obtained by taking transitive closure of the simple directed

graphs obtained by abstracting the hyperNodes within every hyperNode of the

��

graph� A more formal de�nition is provided in the following�

De�nition ��� �Transitive Closure of a HyperNodeGraph� Let G ! �S�E�

be a hyperNodeGraph and G�T��T������Tsize�S� ! �S�T��T������Tsize�S�� EG�T��T��

����Tsize�S�� is a simple directed graph obtained by abstracting every node T�� T�� ����

Tsize�S� � S and �G�T��T������Tsize�S��
� is the transitive closure of this simple

directed graph� Furthermore� let �G�Ti��V��V������Vsize�Ti��
� be a simple directed

graph obtained in the same way� where Ti � S� and G�Ti� is the restriction of G

to Ti� and G� ! ��G�T��T������Tsize�S��
� �Ni�� �G�Ti��V��V������Vsize�Ti��

�� and N

is the number of hyperNodes in G� The transitive closure of a hyperNodeGraph

G ! �S�E� is a hyperNodeGraph G� ! �S�E��� such that for all Ta� Tb � S� there

is an edge hTa� Tbi � E�� i� there is a non
null path from ta to tb in G�� where ta

and tb are the abstractions of the nodes Ta and Tb respectively� �

Furthermore� a �
level hyperGraph which represents constraints graphs of a

work�ow should be consistent with its control
�ow� The reason behind this re

quirement is explained in Chapter �� A �
level hyperGraph is said to be consistent

with a hyperNodeGraph i� for any edge between the two hyperNodes Tk� Tl of

the �
level hyperGraph the following condition hold� For every element Ta � Tk�

and for every element Tb � Tl� there should be an edge in the transitive closure of

the hyperNodeGraph from Ta itself or a hyperNode which includes it� to Tb itself

or a hyperNode which includes it� If Tk or Tl is a simple element the condition

above should hold for itself�

In the following de�nition� these explanations are provided formally�

��

De�nition ��� �Consistency with a HyperNodeGraph� A DAG D ! �T� V �

is said to be consistent with a hyperNodeGraph G ! �S�E� i� the following

condition is satis�ed�

� For any hTa� Tbi � V �
hSi� Sji � E�� where Si ! Ta or Si ! TA such that

Ta � TA � S� and Sj ! Tb or Sj ! TB such that Tb � TB � S�

A �
level hyperGraph D ! �T� V � is said to be consistent with a hyperNodeGraph

G ! �S�E� i� for any hTk� Tli � V the following condition is satis�ed�

� For any Ta � Tk and Tb � Tl�
hSi� Sji � E�� where Si ! Ta or Si ! TA such

that Ta � TA � S� and Sj ! Tb or Sj ! TB such that Tb � TB � S�

�

��
c
��
d

��
��
��
��

a

��
��
��
��

b
����

f
��
g

T

Figure ���� A DAG Consistent with the HyperNodeGraph of Figure ����

Example ��� The DAG in Figure ��� and the �
level hyperGraph in Figure ���

are consistent with the hyperNodeGraph in Figure ���� �

Some work�ow models assume that� all the structural components �i�e�� control

�ow� can be speci�ed in advance� However� in some work�ow applications either

��

the number of activities in a work�ow execution or the control
�ow dependencies

that must be enforced can not be determined in advance� These cases are named

as domain uncertainty and structural uncertainty respectively ����� Structural

uncertainty occurs due to the fact that a work�ow speci�cation can contain a

condition to allow selections� Our formalization covers this type of uncertainty

and this is explained later in this chapter� Domain uncertainty occurs due to the

loops �i�e�� iterations� that can occur in a work�ow speci�cation� Within a loop

work�ow activities are repeated as long as a certain condition holds� However�

representing domain uncertainty in a control
�ow makes the notation used in the

correctness theory complicated� This is due to the fact that each instantiation of

an activity within a loop should be treated as a di�erent element for the correct

ness� Therefore for the sake of simplicity� we assume that a control
�ow graph

does not contain cycles� With this assumption a hyperNodeGraph is re�ned to a

hyperNodeDAG in the following de�nition�

De�nition ��� �HyperNodeDAG� A hyperNodeDAG is a hyperNodeGraph

G ! �S�E� in which the abstraction of all elements results in a simple DAG� and

this is recursively valid for any Sa � S� �

Example ��� The hyperNodeGraph in Figure ��� is a hyperNodeDAG� This is

due to the fact that hyperNodeGraph in Figure ��� contains no cycles after all

the elements of S are abstracted� i�e�� G������ contains no cycles� furthermore�

��� and ������� and ��� do not include any cycles� Thus the graph in Figure ���

is a hyperNodeDAG� �

��

Recall that� a �
level hyperGraph representing constraints graphs of a work

�ow should be consistent with the control
�ow graph� Since we use a hyperN

odeDAG to represent the control
�ow� if a �
level hyperGraph is consistent with

this graph it should be acyclic also intuitively� i�e�� it should contain no cycles

involving its hyperNodes or simple nodes� In this case we name this graph as a

�level hyperDAG� A de�nition of a �
level hyperDAG is provided in the following�

De�nition ���� �	�level HyperDAG� Let G ! �S�E� be a �
level hyper

Graph� and D ! �T� V � is a simple directed graph� where T ! base�S�� and for

any Ta� Tb � T � hTa� Tbi � V 	 hSa� Sbi � E� where �Sa ! Ta or Ta � Sa� and

�Sb ! Tb or Tb � Sb�� G ! �S�E� is a
�level hyperDAG i� D is acyclic� �

In the following we provide a path de�nition for a hyperNodeDAG� A path

involves a sequence of nodes for which there is an edge between consecutive nodes�

Thus a path may be speci�ed as a sequence of edges between these consecutive

nodes�

De�nition ���� �A Path in a HyperNodeDAG� In a hyperNodeDAG G !

�S�E�� a path is a sequence �e�� e�� ���� ek� of edges such that ei ! hsi� si��i 	

hSi� Si��i � E� where i ! �� ���� k and si� si�� are the abstractions of the nodes

Si� Si�� � S respectively� A path connecting the nodes s� and sk�� is denoted as

hs�� sk��i�path� �

��

Notice that� if a hyperNode is involved in a path its abstraction is included

in the path� therefore� a path in a hyperNodeDAG can be treated as a simple

DAG� A path de�nition makes it possible to identify a sequence of individual and

conceptual activities which are executed one after another� For example� consider

the conditional branches in a work�ow speci�cation� The possible �ows between

a split activity and a join activity can be speci�ed as a set of paths between these

activities�

In the following de�nition we distinguish initial� �nal� �rst� and last nodes of

a hyperNodeDAG� These nodes shall correspond to the specialized activities of

a work�ow� Initial and �nal nodes are simple nodes for which hyperNodes that

include them and themselves have no predecessors and no successors respectively�

Furthermore� if there is a unique initial or a unique �nal node they are called as

�rst and last nodes respectively� As we provide later in this chapter� we require

a control
�ow to include unique initial and �nal activities� i�e�� it should include

a �rst and a last activity�

De�nition ���	 �Initial� Final� First� Last Nodes� A simple node �in � S

of a hyperNodeDAG G ! �S�E� is called initial� if indegree��in� ! �� and for

any Sa such that �in � Sa� indegree�Sa� ! �� A simple node �fin � S of a

hyperNodeDAG G ! �S�E� is called �nal� if outdegree��fin� ! �� and for any Sa

such that �fin � Sa� outdegree�Sa� ! �� If initial ��nal� node of a hyperNodeDAG

G ! �S�E� is unique� it is the �rst �last� node of S� denoted as �f ��l�� �

Example ��� Consider the hyperNodeDAG in Figure ���� In this graph� c� e� b

��

are the initial nodes� h is the �nal node� there is no �rst node� and h is the last

node� �

Notice that initial� �nal� �rst� and last nodes should be simple� So� for example

a hyperNode can not be an initial node even when its indegree is zero�

As mentioned previously� work�ow activities can be executed sequentially or

in parallel� In representing control
�ow� the node where the control splits into

multiple parallel activities is referred to as split node� The node where control

merges into one activity is referred to as join node� We introduce split and join

nodes into a hyperNodeDAG de�nition to model these issues� the resulting graph

is called a split
join hyperNodeDAG�

De�nition ���
 �Split� Join Nodes� Split�Join HyperNodeDAG� A split

node of a hyperNodeDAG G ! �S�E� is a simple node S��s� �i�e�� �s � S� for

which indegree��s� � � and outdegree��s� � �� A join node of G ! �S�E� is a

simple node S��j� �i�e�� �j � S� for which indegree��j� � � and outdegree��j� �

�� A split�join hyperNodeDAG G ! �S�E� is a hyperNodeDAG for which the

following conditions hold�

� There exist a �rst and a last element�

� If there is a split element this must be the �rst element� and there must

correspond a join element to this� and this should be the last element�

� Furthermore� for any restriction G�Sa�� where Sa � S the conditions above

hold� �

��

According to the above de�nition� a simple node is a split node if there are at

most one edge incoming to it and at least two edges outgoing from it� A simple

node is a join node if there are at least two edges incoming to it and at most one

edge outgoing from it�

In a control
�ow graph� a split node from where control splits into two or

more �ows in order to execute activities in parallel is called an and�split node�

After the termination of all activities involved in these �ows� control merges into

a join activity and execution continues from this activity� A split node where

a decision is made upon which branch to take when encountered with multiple

branches is called an or�xor�split node� Some of the branches following an or
split

node� and exactly one of the branches following an xor
split node are selected for

execution� This selection may depend on a condition� In our model� truth value

of a condition is determined by an or xor
split node �i�e�� activity� and according

to this value a branch �or some branches� are selected for execution� In this

case� we name this condition as a test condition and associate it with the branch

for which it is veri�ed� More speci�cally� if s is an or xor
split node and j is

the corresponding join node� each of the branches between them is represented

through a path between s and j� i�e�� hs� ji�pathi� and if a test condition T is used

to select a branch� we label the corresponding hs� ji�pathi with T � If a condition

is not associated with a path we assume that its label is true� i�e�� corresponding

branch is selected for execution unconditionally� Furthermore� since some of the

branches are selected for parallel execution starting from an or
split node� at least

one of the test conditions of these branches should be true at a time� Similarly�

since exactly one of the branches is selected in a xor
split node exactly one of the

��

test conditions of these branches should be true�

Having de�ned adequate tools and setting the necessary background� a formal

de�nition of a work�ow can be provided� A work�ow is de�ned as a �
tuple with

elements representing its activities� control and data
�ow and constraints graphs�

De�nition ���� �Work�ow� A work�ow W is a tuple

W ! �N�CF�DF� IC�BC��

where

� N is a nested hyperSet whose base�N� ! T � S � J � ff� lg where T is the set

of individual activities� S is the set of split activities� J is the set of join

activities� and f and l are the �rst and last activities respectively� and they

are the virtual activities indicating the start and termination of a work�ow

respectively�

� CF ! �N�ECF � L� TC� is a labeled split
join hyperNodeDAG onN correspond

ing to the control��ow� The labels L is a mapping from S to fand� or� xorg

representing the types of split nodes� The labels TC is a mapping from ev

ery hs� ji�path in CF to fT�� T�� ���� Ti� ���� Tng� where s � S is an or xor
split

activity� j � J is the corresponding join activity� and Ti is a test condition� If

TC�hs� ji�path� is not present we assume that TC�hs� ji�path� � true� Fur

thermore� the following conditions hold for every hs� ji�path starting from a

common or xor
split activity s�

 If L�s� ! or then �
outdegree�s�
i�� TC�hs� ji�pathi� � true�

��

T
2

T
1

�
�
�
�
����
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��

��

������

�
�
�
�

��
��
��
��

����

�
�
�
�

xor

and

b c

g j

k

i

ed

f n

l

m

h

a

T
3

Figure ���� A Labeled Split
Join HyperNodeDAG�

 If L�s� ! xor then �outdegree�s�i�� TC�hs� ji�pathi� � true�

where � denotes xor operator�

� DF ! �T�EDF � is a DAG indicating the data��ow such that DF is consistent

with CF �

� IC ! �VIC � EIC � LIC� is a labeled �
level hyperDAG representing inter�activity

constraints graph�

� BC ! �VBC � EBC � CLBC � V LBC� is a labeled �
level hyperDAG representing

basic constraints graph�

�

In the following an example is provided to clarify the de�nition of work�ow�

Example ���� Figure ��� demonstrates a sample labeled split
join hyperN

odeDAG which corresponds to a control
�ow� In this graph� N ! fa� b� fc� d� e� f�

g� fh� i� j� k� lg� mg� ng� and T ! fb� d� e� f� g� i� j� kg� S ! fc� hg� J ! fl� mg�

��

f ! a� l ! n� Furthermore� L�c� ! xor� L�h� ! and� and TC�hc�mi�path�� ! T��

TC�hc�mi�path�� ! T�� TC�hc�mi�path�� ! T�� and the condition T� � T� � T�

should be true� �

In the above work�ow de�nition� main components of a work�ow are formal

ized� Other properties of work�ows such as assignment of agents to activities�

assignment of users to roles etc� are not taken into account in the formalization�

since they are out of the scope of the main focus of this work� Last two compo

nents of a work�ow de�nition� namely inter
activity constraints graph �IC� and

basic constraints graph �BC� constitute our basic building blocks to develop a

correctness theory for a concurrent execution of work�ows� Semantics and con

struction of these graphs are discussed in the following chapter�

��

CHAPTER �

CORRECTNESS OF ACTIVITIES AND

WORKFLOWS

In this chapter� we formalize the work�ow correctness in the presence of concur

rency� A work�ow involves several activities each of which is performed by an

agent� These activities access resources which denote the set of all objects con

stituting the work�ow environment� We de�ne the correct execution of activities

in terms of their input and output speci�cations which are the set of constraints

on the work�ow environment� These constraints can be classi�ed into two cat

egories in general� namely basic constraints and inter
activity constraints which

are formally de�ned as �rst
order logic formulas� The constraints that should be

satis�ed when an activity starts constitute the input condition of the activity�

An output condition of an activity on the other hand imposes a constraint upon

the work�ow environment in which a work�ow system must �nd itself after the

execution of this activity�

��

In order to represent an interleaved execution of work�ows we introduce a

complete execution history and use the input and output conditions to de�ne

the correctness of this history� A complete execution history is correct if input

condition of every activity involved in this history is correct when the activity

starts and if the basic constraints that hold when the history starts also hold

at the end of the history� We then provide a theorem which states that a com

plete execution history is correct if the inter
activity constraints are preserved

in the required intervals and activities that require correctness of related basic

constraints are prevented from executing during the intervals where these con

straints do not hold� Inter
activity constraints and basic constraints are repre

sented through inter
activity constraints graph and basic constraints graph which

are used in formalizing the intervals among activities where an inter
activity con

straint should be maintained and the intervals where a basic constraint remains

invalid respectively�

In the following� we provide some basic de�nitions and notations used in

representing activity and work�ow semantics and in de�ning the correctness of

work�ows� We begin by de�ning the state of the work�ow environment� and then

provide a de�nition of a formula which is used to formally express constraints

over the objects of the work�ow environment�

De�nition
�� �Work�ow Environment� State of the Work�ow Envi�

ronment� Let RM ! �ni��RM
i be the set of transactional and non
transactional

resource managers involved in a work�ow system� The set of all variables �objects�

controlled by RM i is denoted by Oi� O ! �ni��O
i represents the set of all objects

��

of the work�ow environment� and dom�oi� denotes the domain of an object oi� A

state �or valuation� of a work�ow environment is a function St � O� St�� where

St� ! �size�O�
i�� dom�oi� ! dom�o��� dom�o��� ���� dom�osize�O��� and � denotes

the cartesian product� We use St� to represent the set of all possible states� �

Notice that replicated or versioned objects are not considered in the state

de�nition� An activity t is a mapping from St� to St�� i�e�� t � St� � St�� The

resulting work�ow environment state after an activity t is applied to state St

is denoted as t�St�� However� this de�nition of an activity is not su�cient for

our purposes since we require some semantic knowledge to de�ne correctness of

activities� Activity semantic is de�ned in terms of constraints on the work�ow

environment as mentioned previously�

As speci�cation languages� �rst
order logic has been the dominant choice for

the expression of constraints� Therefore� to represent constraints over the objects

of the work�ow environment we use First
Order Logic �FOL� formulas de�ned

below�

De�nition
�	 �First�Order Logic Formula� A First�Order Logic �FOL� For�

mula can be recursively de�ned as follows� A term is a constant or a variable

�object�� An atomic formula is of the form a��a� or p�a�� ���� an� �where � is one

of !��!��������� p is a relation symbol and a�� ���� an are terms�� If A and B are

formulas and x is a variable� then the following are also formulas� �A� A � B�

A � B� ��x���A�� �
x���A�� �

��

We use calligraphic letters A�����Z to denote FOL formulas� Notice that a

"FOL formula" is a formal expression denoting a constraint or condition� There

fore after this point the terms FOL formula� constraint and condition are used

interchangeably� More information on FOL formulas can be found in �����

Notation� Let F be a FOL formula and St be a particular state of the work�ow

environment� We use notation St j!F to mean that F is true for the state St�

If F is false in St this is represented as St �j!F � We denote the set of states that

satisfy a formula F as F�St�� i�e�� F�St� ! fSt j St j! Fg� The set of objects

�variables� involved in a formula F is represented as O�F��

Now� we can give the formal de�nition of a work�ow activity in terms of its

parameters� objects accessed� and its speci�cation�

De�nition
�
 �Activity� An activity t is a tuple

t ! �IP�OP�RS�WS�AS��

where

� IP is the set of input parameters�

� OP is the set of output parameters�

� RS is the set of objects read by t�

� WS is the set of objects updated by t�

� AS is the activity speci�cation� �

��

In the above de�nition� we assume that WS � RS� The last item� speci�ca

tion of an activity� is clari�ed through the following de�nition�

De�nition
�� �Speci�cation of an Activity� A speci�cation of an activity t

is a tuple AS�t� ! �It� Ot�� where It and Ot are the set of FOL formulas on O

�i�e�� objects of the work�ow environment�� It � �iIt�i� where It�i � It� is called

the input speci�cation or input condition of t and Ot � �jOt�j� where Ot�j � Ot�

is called the output speci�cation or output condition of t� �

In the above de�nition� It �Ot� is obtained by taking conjunction of all for

mulas in the set It �Ot�� An activity is said to be correct with respect to a

speci�cation AS�t� ! �It� Ot� if any terminating execution of t starting from an

initial state St satisfying It ends in some �nal state St� ! t�St� satisfying Ot�

i�e�� ��St � St�� � ��St j! It�� �t�St� j! Ot��� The activities are assumed to be

correct and deterministic by intuition�

More information about formal speci�cation of programs �e�g�� activities� can

be found in Hoare ����� and Dijkstra�s works ����� Related work includes modal

and temporal logics ���� ����

An output condition of an activity imposes a constraint upon the work�ow

environment in which work�ow system must �nd itself after the execution of this

activity� The following example demonstrates this situation�

Example
�� The output condition of WithdrawFromStock �shortly tWFS�

activity whose purpose is to withdraw required raw materials of type mi from

��

the stock is de�ned as follows�

OtWFS
� �quantity�mi�

� ! quantity�mi�� required�mi��� �����

OtWFS
states that available amount of mi is decremented by required�mi�� �

The input condition characterizes the set of all initial states such that the

termination of an activity will leave the system in a �nal state satisfying the

output condition� In other words� input condition of an activity represents the

states of the work�ow environment in which the activity can be executed correctly�

Depending on the validity of the input condition� the following three possibilities

can occur �������

� Activation of t leads a �nal state satisfying Ot�

� Activation of t leads a �nal state satisfying �Ot�

� Activation of t does not lead a �nal state� i�e�� activity fails to terminate

properly�

Since an activity t is designed correctly and it is executed in isolation �i�e�� it is

execution
atomic�� if its input condition is satis�ed then the execution of t yields

in �rst possibility� However� if the input condition is not satis�ed the execution

of t may result in any of three possibilities� What constitutes the input condition

of an activity is described later after possible constraints in a work�ow system

are introduced� The following is an example to input condition of an activity�

Example
�	 Input condition of tWFS activity states that su�cient amount of

��

raw material of type mi should be available in the stock�

ItWFS
� �quantity�mi� � required�mi��� �����

Note that� in order to satisfy the output condition in Formula ���� this input

condition must be true prior to execution of tWFS� �

Intuitively� the following conditions should hold to execute an activity t cor

rectly�

� t should read consistent �correct� values of objects in a work�ow environ

ment� hence� these consistent values should be displayed to the users and or

used to update other �or same� objects�

� If the correct execution of an activity depends on the validity of constraints

that are set or veri�ed by preceding activities� these constraints should still

be valid prior to the execution of t�

In the following� we discuss these two conditions in detail� We start by de

scribing what should be understood from correctness of a work�ow environment�

Correct states of a work�ow environment are represented through basic con

straints� Below� we provide the de�nition of a basic constraint together with

some examples clarifying di�erent cases�

De�nition
�
 �Basic Constraints� A basic constraint Bi is a FOL formula de

�ned on the objects of the work�ow environment� The set of all basic constraints

are represented as B and called as the basic constraints of the work�ow system�

��

B � �iBi� where Bi � B� �i�e�� B is equal to the conjunction of all basic con

straints in the set B�� partition the set of all possible states St� into two disjoint

sets� B�St� and St��B�St�� First is the set of correct states in which all basic

constraints hold� and second is the set of incorrect states in which one or more

basic constraints are violated� �

Thus� basic constraints specify the correct states of the work�ow environment

as the following examples demonstrate�

Example
�
 Suppose that a basic constraint of the stock databases in the order

processing example is de�ned as follows�

B� � �#w
j��quantity�mi�j� ! Mi�� �����

where quantity�mi�j� represents the amount of raw material mi in the stocks of

warehouse j� and w is the total number of di�erent warehouses in the enterprise�

Total amount of raw material mi currently residing at the stocks is denoted

as Mi� Notice that� B� does not prevent entering new raw materials of type

mi into stocks or withdrawing them for production� yet B� implies that "raw

materials should neither be created or destroyed during the transfer of these raw

materials between the stocks of di�erent warehouses by a WarehouseAllocation

work�ow"� �

Example
�� Suppose that balance of unpaid bills of a customer has a prede�ned

upper limit in the order processing example� Thus� a basic constraint of the

��

work�ow system is de�ned as follows�

B� � ���ci � customerList� � �unpaidBalance�ci� � Ui��� �����

where customerList denotes the customers of the manufacturing enterprise� and

unpaidBalance�ci� and Ui denote the balance of unpaid bills and the upper limit

of a particular customer ci respectively� B� implies that "orders invoked by a

customer should not cause an overdraft"� �

These examples demonstrate that basic constraints require activities to be

designed and or arranged properly in a control
�ow in order to rationally update

a work�ow environment� so that these basic constraints are not violated during

their execution� For example� activities of Billing work�ow should be designed

properly� so that balance of unpaid bills of a customer does not cause an overdraft�

The restrictions induced by basic constraints in the design of a work�ow are

clari�ed later in this chapter through De�nition �����

Some activities require that some of the basic constraints must hold to execute

them correctly� Thus these basic constraints are involved in the input conditions

of these activities� The set of basic constraints to be involved in the input condi

tion of an activity t is denoted as B�t�� and de�ned as follows�

��Bi � B� � ��O�Bi� � RS�t� �! ��� �Bi � B�t���� �����

According to Formula � if an object involved in a basic constraint Bi is also

an element of the read set of t �i�e�� RS�t��� Bi is included in the set of basic

constraints that must be true prior to execution of t� and thus� included in the

��

input condition of t� So activity t accesses correct states of objects in the work

�ow environment� otherwise t may produce incorrect results or update work�ow

environment erroneously�

The following example demonstrates a case in which a basic constraint is

included in the input condition of an activity�

Example
�
 Consider the basic constraint B� �Formula ����� and StockControl

work�ow and its WarehouseEvaluation �shortly tWE� activity which evaluates

the available raw materials of type mi in the stocks of all warehouses� This infor

mation is printed as a report later� Since O�B���RS�tWE� ! �wj��quantity�mi�j��

�i�e�� all quantity�mi� objects in w warehouses� B� should be an element of basic

constraints involved in the input condition of tWE� i�e�� B� � B�tWE�� Since tWE

should see a correct state related to amount of raw material mi in the stocks and

B� describes the corresponding set of correct states� B� must hold for the correct

execution of tWE activity� �

Assume that an incorrect state is also acceptable for a particular Warehouse�

Evaluation activity� Hence a report about approximate quantity of a raw material

in the stocks is allowed� In this case� basic constraint B� can be excluded from

B�tWE� although implied by the Formula ���� In this way� �exibility in the spec

i�cation of incorrect but acceptable states for an activity t can be achieved� This

approach resembles the isolation levels provided by some database management

systems �����

Although activities are usually execution
atomic �i�e�� isolated� steps by their

��

nature� there may be semantic dependencies between them that must be observed

and preserved� For example� an activity may cause that a constraint to be satis�ed

on the work�ow environment after its termination� and a successor activity may

be executed with the assumption of the validity of this constraint� Furthermore�

another activity may evaluate a constraint and determine its truth value� and

this value may be used in the work�ow speci�cation to allow branching� Activi

ties relying on the selected branch are likely to require validity of the constraint

associated with their branch when they are executing� Both cases impose depen

dencies between activities� We represent such dependencies between individual

activities as a set of inter
activity constraints on the work�ow environment�

De�nition
�� �Inter�activity Constraints� Let W ! �N�CF�DF� IC�BC�

be a work�ow� and ti and tj be the particular activities of this work�ow� i�e��

ti � base�N�� tj � base�N�� The inter�activity constraints between ti and tj�

denoted as Cfti�tjg� is a set of constraints on the work�ow environment which

satisfy the following conditions�

��� ti precedes tj in CF �

�	� ��D � Cfti�tjg� � �D � Itj ��

�
� ��D � Cfti�tjg�
F � Oti� � �F � D�� �

In the above de�nition� if a constraint F in the output condition of a preceding

activity ti implies a constraint D in the input condition of a successor activity tj�

the latter constraint is included in the set of inter
activity constraints between

��

these two activities�

Notation� If the conditions in De�nition ��� hold we say that constraint D is

emanating from activity ti and incoming to activity tj� We use these terms to

provide the reader the ability to pictorially imagine the constraint relations be

tween activities� The set of inter
activity constraints incoming to and emanating

from an activity tj are denoted as Cin�tj� and Cout�tj� respectively and de�ned

as follows� Cin�tj� ! �iCfti�tjg� Cout�tj� ! �kCftj �tkg� We denote the set of all

inter
activity constraints in a work�ow as C� i�e�� C ! �jCin�tj� ! �jCout�tj��

The following examples present some inter
activity constraints in the order

processing example�

Example
�� Consider CheckStock �shortly tCS� and WithdrawFromStock

�tWFS� activities� tCS checks whether the required amount of raw material of type

mi �i�e�� required�mi�� to manufacture a particular part is available in the stock�

Thus the current value of quantity�mi� �e�g�� n� is determined and using this

value the missing raw materials �i�e�� missing�mi�� that should be ordered from

external vendors are calculated� Ordered raw materials are inserted into stock

through InsertStock �tIS� activity of V endorOrder work�ow� Thus the output

condition of tCS� and input and output conditions of tIS are de�ned as follows�

OtCS � ��quantity�mi� ! n� � �missing�mi� ! required�mi�� n��� �����

ItIS � �quantity�mi� � n�� �����

��

OtIS � ��quantity�mi�
� ! quantity�mi� $missing�mi�� �

�quantity�mi�
� � required�mi���� �����

where quantity�mi�
� is the new quantity of mi when tIS is completed� Since out

put condition of tCS implies input condition of tIS� i�e�� OtCS � ItIS � and output

condition of tIS implies input condition of tWFS �Formula ����� i�e�� OtIS � ItWFS
�

the constraints �quantity�mi� � n�� and �quantity�mi� � required�mi�� are in

cluded in the sets CftCS �tISg� and CftIS �tWFSg respectively� In other words� if n

particular materials of type mi are available in tCS� at least this amount of ma

terial should be available in the corresponding tIS also� so quantity�mi� becomes

larger than or equal to required�mi� after the insertion of missing materials into

stock� Required�mi� materials should remain in the stock� so ItWFS
holds when

tWFS is executed� Notice that �quantity�mi� � n� is an element of Cin�tIS�� and

Cout�tCS�� and �quantity�mi� � required�mi�� is an element of Cin�tWFS�� and

Cout�tIS�� Furthermore� both of these constraints are elements of C� �

Note that we require implication instead of equivalence between constraints

F � and D in Condition � of De�nition ���� This is due to the fact that� validity of

F already guarantees the validity of D� and D is the constraint that is involved

in the input condition of the successor activity� Thus the inclusion of the less re

strictive constraint D in the set of inter
activity constraints is enough� Therefore�

an implication between F and D is required instead of equivalence� We illus

trate this point through a simple example� Suppose that �quantity�mi� � m��

where m � required�mi� holds after InsertStock activity� thus more than the

��

missing amount of mi is inserted into the stock� Since this constraint implies the

constraint in the input condition of WithdrawFromStock �Formula ����� i�e��

�quantity�mi� � m� � �quantity�mi� � required�mi��� it is enough to include

the latter constraint in the set of inter
activity constraints between these activities

�i�e�� in CftIS �tWFSg��

The following is also an example from order processing work�ow to further

clarify inter
activity constraints�

Example
�� Consider GetProcessP lan work�ow� and its SelectBestCells

�tSBC� activity� Note that� tSBC evaluates the manufacturing cells in the fac

tory and selects the required number of the best quali�ed cells to manufacture a

particular part� Thus�

OtSBC � ���celli � qualifiedCells� �cellj � �cells� qualifiedCells�� �

�rank�celli� � rank�cellj���� �����

where qualifiedCells� and rank�celli� denote the set of selected cells� and rank of

a particular cell respectively� The rank is obtained by evaluating quali�cations�

workload� capacity� etc� of a particular cell� Cells denotes the set of all opera

tional cells in the factory� Since the selected best cells should remain so until the

work is actually assigned to them in the corresponding Assign �tA� activities� the

input condition of a tA activity for celli should be de�ned as follows�

ItA�celli� � ���cellj � �cells� qualifiedCells�� � �rank�celli� �

rank�cellj���� ������

Since OtSBC � ItA�celli� � the constraint ���cellj � �cells � qualifiedCells�� �

��

�rank�celli� � rank�cellj��� should be an element of CftSBC �tA�celli�g
� �

There may be many inter
activity constraints in a work�ow as demonstrated

above� In order to represent them graphically in a work�ow de�nition� we use a

special graph� namely inter�activity constraints graph which is a labeled �
level

hyperDAG de�ned in Chapter �� In this way� inter
activity constraints can be

represented in the way control and data
�ow are represented�

Let W ! �N�CF�DF� IC�BC� be a work�ow� inter
activity constraints be

tween the activities of W are represented as a labeled �
level hyperDAG IC !

�VIC � EIC� LIC�� where VIC and EIC denote the nodes and edges respectively� VIC

is a hyperSet� and for any Sa � VIC � Sa � base�N�� and for any hSa� Sbi � EIC �

Sa � base�N� and Sb � base�N�� LIC are the labels of the edges and it is a

mapping from the edges in EIC to the inter
activity constraints in C� For a given

set of inter
activity constraints between activity pairs� if there is a constraint

F between ti and tj� this is represented through an edge hti� tj�Fi in an inter

activity constraints graph �IC�� If a constraint F emanating from an activity ti is

incoming to more than one activity� these activities are grouped into a hyperSet

S�ti�F� and this situation is represented through the edge hti� S�ti�F��Fi�

The following example demonstrates the construction of an inter
activity con

straints graph for a given set of constraints between activity pairs�

Example
�� Let C ! fF��F��F��F��F	�F
�F�g� and Cft��t�g ! fF�g� Cft��t�g !

fF�g� Cft��t�g ! fF��F��F�g� Cft��t�g ! fF��F�g� Cft��t�g ! fF	g� Cft��t�g ! fF	g�

Cft��t�g ! fF
g� Cft	�t
g ! fF�g� Therefore� Cin�t�� ! �� Cin�t�� ! fF�g�

��

t2

t3

t4

t5

t6

F
1

t1

F
2

F
3

F
4

F
5

F
6

t8

t7 F
7

Figure ���� Inter
activity Constraints Graph�

Cin�t�� ! fF�g� Cin�t�� ! fF��F��F�g� Cin�t	� ! fF��F��F	�F
g� Cin�t
� !

fF	g� Cin�t�� ! �� Cin�t�� ! fF�g� and Cout�t�� ! fF�g� Cout�t�� ! fF��F��F�g�

Cout�t�� ! fF	g� Cout�t�� ! fF
g� Cout�t	� ! �� Cout�t
� ! �� Cout�t�� ! fF�g�

Cout�t�� ! �� Therefore� as explained above� t� and t� are grouped into a hyper

Set and ht�� ft�� t�g�F�i is included in IC� Eventually� IC corresponding to C is

obtained as depicted in Figure ���� �

Note that hyperSets of an IC are not necessarily disjoint and there might

exist multiple edges between the same pairs of nodes as depicted in Figure ����

Note also that IC is consistent with control
�ow graph �CF � due to Condition �

of De�nition ����

An inter
activity constraints graph can be simpli�ed by removing redundant

edges from it� In general if an edge covers another edge in an inter
activity

constraints graph and constraint of the former edge implies the constraint of the

latter edge� the latter edge can be removed from the graph� This is due to the fact

that if �rst inter
activity constraint is valid between the executions of activities in

��

t

G(t)

I

C (t)in B(t)

Figure ���� Relations Between Inter
activity� Basic� and Extensional Constraints�

its source and sink� validity of second constraint is automatically guaranteed� For

example consider the inter
activity constraints graph in Figure ���� Suppose that

F� � F
 in this graph� and since t� precedes t	� and t� precedes t� in control
�ow�

ifF� is valid between t�� and t� and t	� validity ofF
 is already guaranteed between

t� and t	� Therefore the edge ht�� t	�F
i is redundant and can be removed from the

inter
activity constraints graph� Furthermore� some inter
activity constraints can

be removed from an inter
activity constraints graph through human intervention�

If invalidity of an inter
activity constraint is acceptable for a particular activity�

the edge corresponding to this constraint can be excluded from the graph by a

work�ow designer� This is similar to exclusion of some basic constraints from the

input condition of an activity�

We use an inter
activity constraints graph to develop a correctness criterion

for work�ows� The essential criterion for executing an activity correctly is to

satisfy its input condition when it is executed� Since inter
activity constraints

contribute to the input condition of an activity� constraints in an IC graph should

be preserved between the nodes of the graph during execution of the work�ow

since only activities are isolated not the whole work�ow�

Up to this point� we have de�ned basic constraints and inter�activity con�

��

straints� Having de�ned these two types of constraints� we can now formally

provide the semantic of an input condition of an activity t as follows�

It � ��iBi� � ��jFj� � ��kGk�� ������

where Bi � B�t�� and Fj � Cin�t�� and Gk � G�t�� Intuitively� input condition of

an activity is the conjunction of the basic constraints� inter
activity constraints�

and constraints in G�t� which are required to execute this activity correctly� G�t�

is composed of a set of constraints on the work�ow environment to execute t

correctly which are not included in neither in B�t� nor in Cin�t� as depicted in

Figure ���� Therefore constraints in G�t� refer to state information which is not

transferred from preceding activities or can not be represented through basic

constraints� For example� consider WithdrawFromStock activity �shortly tWFS�

�whose speci�cation is given in Examples ���� and ���� and its input condition

which is de�ned in Formula �� Furthermore suppose that a CheckStock activity

is not placed before it in the control
�ow� therefore quantity of missing materials

can not be determined and inserted into stock before the execution of tWFS� In

this case� �quantity�mi� � required�mi�� is not in B�tWFS� and Cin�tWFS�� This

type of constraints are called as an extensional conditions �or constraints��

and included in the set G�t� as depicted in Figure ����

Later in this chapter we discuss the cases in which the constraints in the

input condition of an activity are violated and therefore its correct execution is

sacri�ced� To detect these violations we are interested in whether an activity

maintains a constraint� The following de�nition is presented to formalize this

issue�

��

De�nition
�� �Preserve Function� Let t be an activity and F be a FOL

formula on the work�ow environment� Preserve�t� F� is a three
valued function

which is de�ned as follows�

��� Preserve�t�F� ! true ��� if ��St � St�� � ��St j! F���t�St� j! F��� In this

case we say that "t preserves F"�

�	� Preserve�t�F� ! false ��� if ��St � St�� � ��St j! F���t�St� �j! F��� In

this case we say that "t falsi�es �or invalidates� F"�

�
� Preserve�t�F� !may be �� �� if �
St � St�� � ��St j! F���t�St� �j! F��� In

this case we say that "t may falsify �or is likely to falsify� or may invalidate�

F"� �

Intuitively� Preserve�t�F� ! � or � � requires that WS�t� � O�F� �! �� In

other words� for an activity to falsify a formula� at least one of the objects in

that formula must have been updated in the activity� Introducing a truth
value

between true ��� and false ��� in the de�nition above provides �exibility in the

presentation of con�icts and in the development of concurrency control algorithms

which are discussed in Chapter �� Result of Preserve�t�F� is not always binary

since the e�ects of an activity on the state of the work�ow environment may

depend on the actual values of its input parameters and or the current values

of variables in O�F�� Thus an activity may not falsify some of the constraints

depending on the actual instantiation of these parameters and variables� The

following is a simple example to demonstrate this situation�

��

Example
�� Let F� � �x� � x��� and F� � �x� ! x��� and t� ! increment�x���

t� ! decrement�x��� t� ! increment�x��� t� ! decrement�x��� Assume that

dom�x��� and dom�x�� are equal to the same totally ordered set with respect to

a relation �� Preserve�t�F�� ! � for t � ft�� t�g� Preserve�t�F�� ! ��� for

t � ft�� t�g� Preserve�t�F�� ! � for t � ft�� t�� t�� t�g� �

According to the approach described above� we would like to check activities

to see whether they always preserve a constraint F � But� the recent results in the

related literature show that it is almost impossible to automatically determine

the value of Preserve for a given activity and a constraint� As noted in ���

and ����� for transactions speci�ed as select�project�join expressions of relational

algebra and constraints speci�ed as FOL formulas� it is undecidable to check if

a given transaction preserves a given constraint� Therefore� any approach to

automatically determine value of Preserve for a given activity and a constraint

�such as the approach of ���� that uses theorem provers� is inherently limited�

Since the focus of this thesis is not on these issues we do not dwell on this further�

and we adopt an approach relying on human intervention� We simply assume that

a work�ow system administrator and or work�ow designers can specify the value

of Preserve�t�F��

As discussed previously� basic constraints specify the correct states of the

work�ow environment� Invalidation of basic constraints may be permissible by

the individual activities� yet this situation imposes some restrictions ��� on the ex

ecution of the work�ow in which an activity that invalidates �or may invalidate�

��

a basic constraint resides� and ��� on the execution of activities which require

accessing correct states of the work�ow environment� Since basic constraints rep

resent these correct states� if they are violated during a work�ow execution they

should be satis�ed again prior to the termination of this execution� Otherwise the

work�ow environment is left in an incorrect state� Therefore� a work�ow should

be designed properly so that� if it includes an activity which falsi�es �or may

falsify� a basic constraint then it should include another activity �or possibly a

set of activities� which certainly guarantees revalidation of this basic constraint�

Furthermore� if the same basic constraint is involved in the input condition of

another activity� execution of this activity should be prevented between the ex

ecutions of former and latter activity �or activities�� To capture these issues we

have de�ned a validating set of activities for a basic constraint�

De�nition
�� �And� Or�Validating Sets� Let W ! �N�CF�DF� IC�BC�

be a work�ow� and B be the set of basic constraints of the work�ow system�

Furthermore� let ti � T � where V S � T � and T represents the individual activities

in N � V S is an and�validating set for B � B if the following conditions hold�

��� Preserve�ti�B� ! � or � ��

�	� ��tj � V S� � �ti precedes tj in CF ��

�
� �jOtj � B� where tj � V S�

��� ��tj � V S� � ��kOtk �� B�� where tk � �V S � tj��

��

V S is an or�validating set for B � B if the following conditions hold�

��� Conditions �� and � above�

�	� ��tj � V S� � �Otj � B�� �

Informally� V S is an and
validating set for B if B is a basic constraint which

is �or may be� invalidated by ti� and validated collectively by the elements of

V S� Condition � guarantees that execution of activities in a subset of an and

validating set V S is not a su�cient condition for the validation of B� and therefore

V S is the minimum set of activities to validate B� If the execution of at least one

element of a set of activities �V S� is a su�cient condition for the validation of B

we call V S as the or
validating set for B�

Notation� We denote the set of basic constraints which are �or may be� invalid

between ti and activities of an and
validating set V S as SBfti�V S�andg� The set

of basic constraints which are �or may be� invalid between ti and at least one

activity of an or
validating set V S is denoted as SBfti�V S�org�

In the following� we clarify these de�nitions through examples�

Example
��� Consider the WarehouseAllocation work�ow in Figure ���� Out

put conditions of RetrieveMaterial �tRM �� and UpdateMaterialLocation �tUML�

activities of a WarehouseAllocation work�ow are de�ned as follows�

��

OtRM�wj �
� �quantity�mi�j�

� ! quantity�mi�j�� n�� ������

OtUML�wk�
� �quantity�mi�k�

� ! quantity�mi�k� $ lk�� ������

where wj represents the source warehouse� and wk represents a warehouse k

in destList �i�e�� the list of destination warehouses�� i�e�� wk � destList� and

#
size�destList�
k�� lk ! n� Consider the basic constraint B� �Formula ����� Since after

n raw materials of type mi are withdrawn from the stock of warehouse j� B� is

no longer true of the work�ow environment state� However� B� is resatis�ed after

the termination of the corresponding tUML activities which distribute withdrawn

amount to stocks at di�erent warehouses in destList� In this case tUML�wk� ac

tivities for each warehouse k constitute an and
validating set for B�� since after

the termination of all activities in this set B� is satis�ed again� and therefore

SB
ftRM�wj �

��
size�destList�
k��

tUML�wk�
�andg

! fB�g� �

The following is an example to an or
validating set for a basic constraint�

Example
��� Consider Billing work�ow and its UpdateUnpaidBalance �tUUB��

RejectShipping �tRS�� and MoreCredit �tMC� activities �Figure ����� Their out

put conditions are de�ned as follows�

OtUUB � �unpaidBalance�ci�
� ! unpaidBalance�ci� $ b� ������

OtRS � ��unpaidBalance�ci�
� ! unpaidBalance�ci�� b� �

�orderStatus ! rejected�� ������

OtMC
� ��U�

i ! Ui $ c� � �U�
i � unpaidBalance�ci���� ������

��

where U�
i denotes the new upper limit after tMC is terminated� If a customer ci

does not pay the bill of an ordered product� her his balance of unpaid bills �i�e��

unpaidBalance�ci�� is updated in tUUB activity �Formula ���� above�� Since

Preserve�tUUB�B�� ! ���� basic constraint B� �Formula ���� may be invalid at

this moment� In this case either shipping of ordered product is rejected �or de

layed� and unpaidBalance�ci� is decremented in tRS activity �Formula ������ or if

responsible branch of the enterprise grants more credit to this customer� her his

upper limit �Ui� is incremented in tMC activity� thus Ui � unpaidBalance�ci�

holds �Formula ������ Observe that B� is certainly satis�ed after the termination

of either tRS or tMC activity� Therefore tRS and tMC activities constitute an or

validating set for B�� and SBftUUB �ftRS �tMCg�org ! fB�g� �

As the previous examples demonstrate activities of an and or
validating set

guarantee revalidation of a basic constraint� Yet to achieve this� there is a pre

requisite which is a natural outcome of our de�nition of activity semantic� Input

conditions of activities of an and or
validating set should hold when they are

executed� Only in this way Condition � for an and
validating set� and Condi

tion � for an or
validating set in De�nition ��� can be satis�ed� To achieve this�

required inter
activity constraints between the activity which �may� invalidate

a basic constraint and activities in the corresponding validating set should be

preserved� The following example demonstrates this requirement�

Example
��	 In the manufacturing example� a product is composed of parts and

parts are further composed of raw materials� Therefore consistency of technical

��

data� i�e�� design information belonging to a product and its constituting parts

is an essential requirement in a manufacturing process� To state this� a basic

constraint of the system is de�ned as follows�

B� � ���prodi � products� �partj � parts� � ��partj � P �prodi���

Consistent�design�prodi�� design�partj����� ������

Acording to B�� design of a product� i�e�� design�prodi�� should be consistent with

designs of its constituting parts� i�e�� design�partj�� where partj � P �prodi� and

P �prodi� is the set of parts involved in the production of prodi� Let UpdatePart

Design �shortly tUPartD� and UpdateProductDesign �tUProdD� be two activities

whose output conditions are de�ned as follows�

OtUPartD � ��design�partj�
� ! design�partj� $ %� �

Consistent�design�prodi� $ F �%�� design�partj�
��� ������

OtUProdD � ��design�prodi�
� ! design�prodi� $ F �%�� �

Consistent�design�prodi�
�� design�partj��� ������

where design�partj�
� and design�prodi�

� represent new designs� tUPartD changes

design of a part by %� and tUProdD updates corresponding product through a func

tion F �%�� so that the consistency of designs for product and its part is achieved

again after tUProdD� i�e�� OtUProdU � B�� In order to get the above result� however�

input condition of tUProdD should include the constraint Consistent�design�prodi�

$F �%�� design�partj��� That is� prior to execution of tUProdD� change made in

design�partj� must remain the same �i�e�� no other activities change the design of

the part�� so update of design�prodi� by F �%� should make the design of product

��

consistent with its part again� Note that� the output condition of tUPartD also

includes this constraint since this part is redesigned with the assumption that the

product design will change accordingly� As a result� the constraint Consistent

�design�prodi� $ F �%�� design�partj�� is included in the set of inter
activity

constraints between tUPartD� and tUProdD� i�e�� it is an element of CftUPartD�

tUProdDg� �

In De�nition ���� it is assumed that if a basic constraint is �or may be� invali

dated by a previously executed activity� its revalidation is guaranteed by successor

activities in control
�ow� However� this invalidation can be prevented through

the execution of a preceding activity or a set of activities� More precisely� if

Preserve�t�B� ! ��� invalidation of B by the execution of t can be prevented

by the execution of some preceding activities in control
�ow� thus Ot � B� The

following is an example to this situation�

Example
��
 A Bills of Material �BOM� gives the product
part information�

Now suppose that BOM of a particular product involves two parts parti and

partj� and ratio of parti to partj parts which are used to produce this product is

�� Therefore�

B� � �amount�parti� � � � amount�partj�� ������

is de�ned as a basic constraint which states that amount of parti manufactured

in the factory should be equal or greater than the two times of partj� In this

way availability of su�cient amount of these parts can be guaranteed when they

��

are assembled� Suppose that � �m parti� and m partj are manufactured through

ManufacturePart�parti�� and ManufacturePart�partj� �shortly tMP �partj�� ac

tivities respectively� and former activity precedes latter activity in control
�ow�

Intuitively Preserve�tMP �partj��B�� ! ���� yet OtMP �partj�
� B� is guaranteed by

the preceding execution of tMP �parti�� �

As the above example demonstrates� invalidation of a basic constraint can

be prevented by the executions of preceding activities� In this case we do not

include this constraint in the set of basic constraints which are �or may be�

invalid between certain activities �i�e�� SBfti�V S�and�org�� However required inter

activity constraints similar to the one presented in Example ���� should be pre

served to guarantee that a basic constraint is not invalidated when the succes

sor activity is executed� For the example above� constraint amount�parti� �

� � �amount�partj� $m� should hold between the activities� thus validity of B�

is guaranteed�

The de�nitions of validating sets and the cases in Examples ���� and ���� pro

vide su�cient guidance for work�ow designers� so if their work�ow speci�cation

includes an activity which �may� invalidates a basic constraint they should also

include other activities conforming to the de�nitions of validating sets or prevent

this invalidation by placing preceding activities as demonstrated in Example �����

We formally represent and or
validating sets and intervals at which the basic

constraints are �or may be� invalid during the execution of a work�owW � through

a labeled �
level hyperDAG BC ! �VBC � EBC � CLBC � V LBC�� where VBC � and

EBC represent nodes� and edges respectively� VBC is a hyperSet� and for any

��

Sa � VBC � Sa � T and for any hSa� Sbi � EBC � Sa � T and Sb � T � Recall

that T is the set of individual activities of W � CLBC and V LBC are the labels

of edges in EBC � CLBC is a mapping from EBC to negated elements of B� where

B is the set of basic constraints of the work�ow system� and V LBC is a mapping

from EBC to fand� org denoting the types of validating sets� EBC is constructed

through the use of following principles�

� ��B � B� � ��B � SBfti�V S�andg� � �hti� V S��B� andi � EBC���

� ��B � B� � ��B � SBfti�V S�org� � �hti� V S��B� ori � EBC���

According to these principles� if V S is an and
validating set or an or
validating set

for B this situation is represented by the edges hti� V S��B� andi and hti� V S��B�

ori in BC respectively� Note that if V S includes more than one activity it

is represented as a hyperSet in BC� If V S has one element� this element is

represented with a simple node� and since type of V S �i�e�� and or� is immaterial

in this case� label of the edge incoming to V S representing its type is omitted�

Furthermore� BC is consistent with control
�ow graph �CF � due to Condition �

of De�nition ����

The following example demonstrates the construction of a basic constraints

graph using the principles above�

Example
��� Let B ! fB��B��B��B��B	�B
�B�g� and SBft� �ft��t�g�andg ! fB�g�

SBft��ft��t�g�org ! fB��B�g� SBft��t�g ! fB��B	g� SBft��t�g ! fB	g� The corre

sponding basic constraints graph BC is depicted in Figure ���� �

��

t5

t6

t4

B
4

B
5

3

B
2

B
1

B
5

t1
t3

t2

B , or

, or

, and

Figure ���� Basic Constraints Graph�

We use basic constraints graph in conjunction with inter
activity constraints

graph to develop the notion of correct execution of work�ows� Since the edges

of a basic constraints graph represent the intervals where basic constraints are

�or may be� invalid� executions of activities requiring the correctness of these

basic constraints should be prevented in these intervals� Furthermore� required

inter
activity constraints for preserving basic constraints should be placed in the

inter
activity constraints graph and the execution of activities which falsify them

should be prevented in the intervals corresponding to these constraints�

At run
time there exist multiple concurrently executing work�ows� therefore

constraints graphs corresponding to these work�ows should be considered for

de�ning a correctness notion for them� Furthermore to de�ne a correctness crite

rion we need the de�nition of a complete execution history of work�ow instances�

In the following� the de�nition of a complete execution of a work�ow is provided

which is then used in de�ning the history�

In Chapter �� control
�ow of a work�ow is formalized as a labeled split
join

hyperNodeDAG� In this graph� or xor
split nodes cause some activities of the

��

work�ow not to take place in the actual execution� This is due to the fact

that after the execution of an or xor
split node a decision is made upon which

branch to take� To de�ne the parts of a work�ow which are actually executed

at run
time� namely a complete execution of a work�ow� the following algorithm

is provided� In this algorithm� G ! �TG� EG� LG� TCG� is a labeled split
join

hyperNodeDAG which is local to the algorithm itself� The split
join hyperN

odeDAG CE ! �NCE� ECE� is the resulting complete execution graph for a given

control
�ow graph� CF ! �N�ECF � L� TC��

Algorithm
�� �Complete Execution Generation Algorithm�

procedure PathGenerate�G�

begin

	� f � first�G�����������size�TG��� where G ! �TG� EG� LG� TCG��

� l� last�G�����������size�TG���
�� if f is a split node then
�� case LG�f� of

begin
�� and
 for every hf� li�path � EG do
�� ECE � ECE � hf� li�path�
�� or
 for some hf� li�path � EG do
�� ECE � ECE � hf� li�path�
�� xor
 for exactly one hf� li�path � EG do
	�� ECE � ECE � hf� li�path

end
		� else ECE � ECE � hf� li�path�

end

program main

begin

	� NCE � �� ECE � ��

� PathGenerate�CF��
�� for every node �CE � NCE and �CE � hyper�N� do
�� PathGenerate�CF ��CE��

end

�

��

The procedure PathGenerate accepts a labeled split
join hyperNodeDAG G !

�TG� EG� LG� TCG� as an input� In the �rst and second steps of the algorithm each

hyperNode of G is replaced with an abstract simple element� thus it results in a

simple DAG� First and last elements of the resulting graph are assigned to f and

l respectively� If f is an and�split node all paths connecting it to l are included in

CE� if f is an or�split node some of the paths connecting it to l are included in

CE� if f is an xor�split node exactly one of the paths connecting it to l is included

in CE� If f is not a split node� single hf� li�path is included in CE�

The main program which calls procedure PathGenerate is also provided above�

After initialization� this main program executes PathGenerate for control
�ow�

CF � For every node �CE included in CE after this step �i�e�� �CE � NCE�� if

this node corresponds to a hyperNode in CF � PathGenerate is called with the

restriction of CF to this node �i�e�� CF ��CE�� as the input� The program executes

until there is no element in CE corresponding to a hyperNode in CF � In this

way� a complete execution is generated in a top
down fashion�

In the following� a complete execution of a work�ow is formally de�ned as an

outcome of the main program above�

De�nition
�� �Complete Execution of a Work�ow� Let W ! �N�CF�DF�

IC�BC� be a work�ow� and CF ! �N�ECF � L� TC� be its control
�ow� where

CF itself is thought as a single node at an abstract level� A Complete Execution

of W denoted as CE ! �NCE� ECE� is a split
join hyperNodeDAG which can

be generated through the Complete Execution Generation Algorithm �Algorithm

����� �

��

Notice that there could be many complete executions that can be generated

from the control
�ow graph using Algorithm ���� This is due to the nondeter

minism introduced by the or xor
split nodes of the control
�ow� The follow

ing example demonstrates the generation of a complete execution from a given

control
�ow�

Example
��
 Consider the control
�ow graph �CF � in Figure ���� One of the

complete executions of that is generated from CF � e�g�� CE� ! �NCE� � ECE���

can be de�ned as follows� NCE� ! fa� b� fc� g� fh� i� j� k� lg� mg� ng� and ECE� !

fha� bi� hb� ��i� h��� ni� hc� gi� hg� ���i� h���� mi� hh� ii� hh� ji� hh� ki� hi� li� hj� li� hk� lig�

where �� ! fc� g� fh� i� j� k� lg� mg� and ��� ! fh� i� j� k� lg� To generate CE� from

CF � PathGenerate�CF � is executed as a �rst step� In this stage� f and l are

assigned to a and n respectively� and since f is not a split node in this case� hf� li�

path ! �ha� bi� hb� s�i� hs�� ni� is included in CE�� After this� since s� � hyper�N��

PathGenerate�CF �s��� is called� In this stage� since f ! c is an xor
split node

exactly one hf� li�path ! �hc� gi� hg� s�
i� hs�
� mi� is selected nondeterministicly�

Lastly� PathGenerate�CF �s�
�� is called and eventually CE� is generated� Note

that three complete executions can be generated form the control
�ow graph in

Figure ���� �

As stated previously� basic constraints can be violated during a work�ow

execution� yet as one of the essential conditions to preserve them all complete

executions must satisfy the criteria given in the following de�nition�

��

De�nition
��� �Validation Complete Control�Flow� LetW ! �N�CF�DF�

IC�BC� be a work�ow� and BC ! �VBC � EBC � CLBC � V LBC� be its basic con

straints graph� CF is a Validation Complete Control�Flow if the following condi

tions hold for every complete execution CEi ! �NCEi� ECEi� of W �

��� ��ht� V S��B� andi � EBC� � ��t � base�NCEi��� �V S � base�NCEi����

�	� ��ht� V S��B� ori � EBC� � ��t � base�NCEi��� �V S � base�NCEi� �! ���� �

Conditions � and � state that if an activity �t� does not preserve a basic

constraint �i�e�� Ot �� B�� then every complete execution �CEi� including this

activity must contain activities which validate this basic constraint again �i�e��

activities of the corresponding and
validating set or at least one activity of corre

sponding or
validating set�� This property must be taken into consideration and

ensured by the work�ow designers� Thus an essential condition to preserve basic

constraints holds� Notice that� if Preserve�t�B� ! ��� and invalidation of B is

prevented by the preceding activities then Ot � B� In this case� t is not placed

in BC�

The following example clari�es the de�nition above�

Example
��� Consider WarehouseAllocation� and Billing work�ows in Fig

ure ��� and Figure ��� respectively� and basic constraints B� �Formula �����

and B� �Formula ����� Let BCWA and BCB be the basic constraints graphs

of WarehouseAllocation and Billing work�ows respectively� According to Ex

��

amples ����� and ����� htRM�wj�� �
size�destList�
k�� tUML�wk���B�� andi � EBCWA

� and

htUUB� ftRS� tMCg��B�� ori � EBCB � WarehouseAllocation and Billing work

�ows have validation complete control
�ows� since intuitively every complete ex

ecution of WarehouseAllocation work�ow includes the activities in �size�destLit�k��

tUML�wk� if it includes tRM�wj �� and every complete execution of Billing work�ow

includes either tRS or tMC activity in the case B� is falsi�ed by tUUB� �

A work�ow environment can be left in an incorrect state due to incorrect in

terleavings during the execution of activities of the same or di�erent work�ows

even these individual work�ows have validation complete control
�ows� Further

more inter
activity constraints can be invalidated and therefore input conditions

of some activities may be false when they are executed� Both situations sacri

�ce the correctness of work�ows� which is de�ned formally later in this chapter�

To prevent these violations� proper concurrency control mechanisms are needed�

But before introducing a correctness notion and a concurrency control mechanism

based on it� we provide a formal de�nition of concurrent execution of work�ows�

namely a complete execution history of work�ows� To specify interleavings of

work�ows and their constituting activities clearly in this de�nition� time intervals

are associated with them during execution� Furthermore� when we demonstrate

con�icts between activities and de�ne conditions for the correctness� we refer

to some relations between the time intervals associated with the activities and

edges in the constraints graphs� Therefore these relations are also introduced in

the following�

��

Table ���� Relations De�ned on Time Intervals�

Relation Condition
TIi and TIj intersect ��END�TIi� � START �TIj���

��END�TIj� � START �TIi��
TIi covers TIj �START �TIi� � START �TIj���

�END�TIj� � END�TIi��

Assuming a model consisting of a fully ordered set of points �instants� of time�

a time interval TI is an ordered pair of points which represents its endpoints� i�e��

TI ! �START �TI�� END�TI��� where START �TI� and END�TI� denote the

start
point and end
point of TI respectively� Two relations between the time

intervals� namely intersect and cover are presented in Table ���� In this table�

TIi and TIj represent two arbitrary time intervals� TIi and TIj intersect� which

is denoted as TIi � TIj �! �� if they have at least a common point of time� If TIi

covers TIj this is denoted as TIi � TIj� More information about time intervals

and relations between them can be found in ����

After introducing time intervals and required relations among them� the fol

lowing de�nition of the complete execution history of work�ows is presented�

De�nition
��� �Complete Execution History of Work�ows� A Complete

Execution History CH ! �TCH � ECH � LCH� de�ned over a set of complete work

�ow executions CE! fCE�� CE�� ���� CEng� where CE�� CE�� ���� CEn are gener

ated from control
�ows of a set of work�ows W ! fW��W�� ����Wmg� is a labeled

split
join hyperNodeDAG� where

� TCH ! �ni��NCEi�fsCH � jCHg� where sCH and jCH denote the split and join

nodes of CH respectively� and sCH � jCH are equal to fCH and lCH ��rst

��

Time

CE
2

CE
1

TI
CH

s TICE
1

s
CH

j
CH

�� �
�
�
�

TICE
2

TI
CH

j

CH

CH
f= = l

CH

Figure ���� A Complete Execution History of Work�ows�

and last nodes of CH� respectively�

� ECH ! ��ni��ECEi� � ��ni��fhsCH � NCEii� hNCEi� jCHig��

� LCH is the labels of the nodes� i�e�� each node is labeled with its time interval

TI� For a simple node S� TIS ! �start�S�� end�S��� where start�S� and

end�S� denote the time instants when the activity is started and terminated

respectively� For a hyperNode S� TIS ! �min�START �TISi��� max�END

�TISi���� where Si is a simple or a hyperNode of S �i�e�� Si � S�� �

Example
��� Labeled split
join hyperNodeDAG in Figure ��� represents a com

plete execution history CH involving two complete work�ow executions CE�� and

CE� whose nodes and edges are omitted for the sake of simplicity� Time intervals

associated with CE�� CE�� and split and join nodes of CH are also depicted and

observe that TICE� � TICE� �! � in this �gure� �

In the following de�nition� a correctness criterion for a complete execution

��

history of work�ows is presented� In this de�nition� a correct complete execution

history is characterized by referring to the properties of the work�ow environment

state at particular time instants� Intuitively� for an in�nite sequence � ! �� �� �� ���

of time instants there is a corresponding sequence St
� St�� St�� ��� of work�ow

environment states� The notation Stevent is employed to denote a particular

work�ow environment state at the time instant with which the event is associated�

For example� Ststart�t� denotes the state when activity t is started� If a constraint

F holds at the time instant at which event occurs� this situation is represented

as Stevent j! F �

De�nition
��	 �Correct Complete Execution History� A Complete Exe�

cution History CH ! �TCH � ECH � LCH� is correct if the following conditions hold�

��� ��t � base�TCH�� � �Ststart�t� j! It��

�	� �Ststart�fCH � j! B� � �Stend�lCH� j! B�� where fCH and lCH are the �rst and

last nodes of CH respectively� and B ! �iBi where Bi � B� and B is basic

constraints of the work�ow system� �

According to this de�nition� correctness of a complete execution history de

pends on two conditions� Condition � states that when an activity t involved

in the history is started its input condition It should hold� Notice that since

the individual activities are execution
atomic �i�e�� isolated�� validity of their in

put conditions when they are started is a su�cient condition to execute them

correctly�

��

According to Condition �� if the basic constraints of the work�ow system are

true when the complete execution history is started these constraints should be

true after the termination of the history� States of the work�ow environment when

the history is started and terminated are represented as Ststart�fCH �� and Stend�lCH�

respectively� where start�fCH�� and end�lCH� represent the time instants where

fCH and lCH are started and terminated respectively�

After de�ning a correctness notion for a complete execution history of work

�ows the ways correctness can be sacri�ced are illustrated in the following para

graphs� If the execution of activities of work�ows are interleaved� correctness of

a complete execution history can be violated in two ways�

� Input condition of an activity tmay be false when t is executed �i�e�� Ststart�t�

�j! It��

� Although basic constraints are true when the complete execution history is

started� they may be false when it is terminated �i�e�� Stexecute�lCH� �j! B��

According to Formula ���� input condition of an activity t is composed of

inter
activity constraints in Cin�t�� basic constraints in B�t�� and constraints in

G�t�� Thus the input condition of an activity can be violated in three ways�

� An inter
activity constraint F � Cin�t� may be false when t is executed�

� A basic constraint B � B�t� may be false when t is executed�

� An extensional constraint G � G�t� may be false when t is executed�

The following two examples demonstrate the �rst case�

��

Example
��� Consider the CheckStock �tCS�� InsertStock �tIS�� andWithdraw

FromStock �tWFS� activities� and the inter
activity constraints F� � �quantity

�mi� � n�� and F� � �quantity�mi� � required�mi�� given in Example ���� Re

member that F� � CftCS �tISg� and F� � CftIS �tWFSg� Since raw materials of type

mi may be withdrawn from the stock by the concurrently executing tWFS activity

of some other work�ows� F�� and F� may be invalidated between the tCS� and

tIS activities� and corresponding tWFS activity� This situation is depicted in the

following�

F1

CheckStock1 WithdrawFromStock1

WithdrawFromStock2

F2

InsertStock1

Suppose that tCS� sees n ! �� raw materials in the stock and required�mi� ! ����

therefore �� raw materials are ordered from vendors and inserted into stock

through tIS� activity� After this� if a tWFS� activity of another instance of

OrderProcessing work�ow withdraws �� raw materials of same type� input con

dition of tWFS� �i�e�� quantity�mi� � ���� is invalidated� �

Example
��� Consider SelectBestCells �tSBC� and Assign �tA� activities� and

the inter
activity constraint F� � ���cellj � �qualifiedCells�� � �rank�celli� �

rank�cellj��� de�ned in Example ���� Recall that F� � CftSBC �tA�celli�g
� Since

other tA activities might concurrently assign a work to a preselected cells they

can invalidate F�� This situation is depicted as follows�

��

(cell)1

SelectBestCells1

3

Assign2

F

AssignAssign1(cell)1 1 (cell)2

Suppose that available cells are evaluated in tSBC� � and cell� and cell� are se

lected� If tA��cell�� assigns a heavy work to cell�� and degrades its previously

assessed rank� cell� may become a worse selection for the assignment of the work

in tA��cell��� Thus input condition of tA��cell�� may be invalid when it is executed� �

The following example demonstrates a situation in which a basic constraint

involved in the input condition of an activity is falsi�ed�

Example
�	� Consider Examples ��� and ����� and note that basic constraint

B� is false between RetrieveMaterial�wj� �shortly tRM�wj��� and corresponding

UpdateMaterialLocation�wk� �tUML�wk�� activities for every wk � destList� If a

WarehouseEvaluation �tWE� activity is executed between these activities it ex

ecutes incorrectly� since its input condition includes B�� This situation is demon

strated in the following�

w1)RetrieveMaterial1 (w2)

w3)

WarehouseEvaluation2

UpdateMaterialLocation

UpdateMaterialLocation

1

1

1

B

(

(

Suppose that tRM��w�� retrieves ���� raw materials of type mi from the stock of

warehouse w� and these materials are distributed to stocks of warehouses w��

��

and w� through tUML��wk� activities� If tWE� activity is executed between them

it misses the raw materials being transferred and an incorrect amount of raw

material mi is reported� �

The preceding examples demonstrate the possible violations of input condi

tions� Now� we discuss the cases in which basic constraints may remain false after

the termination of a complete execution history�

Note that validation completeness �De�nition ����� is an essential requirement

to preserve basic constraints in a complete execution history� thus if a basic con

straint is invalidated by an activity it is revalidated by the execution of activities

in its validating set� Yet to achieve this� the input conditions of activities in the

validating set must hold when they are executed as demonstrated in Example

����� If input conditions of activities in a validating set are falsi�ed� revalidation

of a basic constraint fails� Thus� although work�ows having validation complete

control
�ows are involved in a complete execution history� a work�ow environ

ment can be left in a state where basic constraints do not hold� The following

example demonstrates this situation�

Example
�	� Suppose that a basic constraint B	 is de�ned as follows�

B	 � ���celli � cells� � ���capacityMode�celli� ! Normal��

�workload�celli� � Ci�� � ��capacityMode�celli� ! Max��

�Ci � workload�celli� � MAXi���� ������

The intuition behind this constraint is as follows� A manufacturing cell �celli� can

��

work in normal �Normal� or maximum �Max� capacity modes� If celli works in

Normal mode� its workload should be equal or less than a predetermined upper

limit Ci� InMax mode� its workload should be between Ci and MAXi� Employing

cells in Normal load is more desirable� and transferring a part of a workload to

other available cells is possible� Consider the following executions of related

activities�

1 (cell1)

B5

Assign (cell1)2

TransferWork1 (cell1)

ChangeMode 2 (cell1)

ChangeMode

Assume that MAX� ! ���� C� ! ���� and current workload of cell� is ����

TransferWork��cell�� �shortly tTW��cell��� transfers a part of cell��s workload

�i�e�� ���� to other available cells� In this case� B	 is invalidated and ChangeMode�

�cell�� �tCM��cell��� should be executed to change mode of cell� from Max to

Normal� Notice that to guarantee validation of B	� inter
activity constraint

F� � �workload�cell�� � C�� ������

must hold when tCM��cell�� is executed� Thus� cell� works in Normal capacity

mode with workload ! ���� and therefore B	 is revalidated after the termina

tion of tCM��cell��� This situation is similar to one presented in Example �����

Consider the executions of activities which belong to another work�ow instance�

Suppose that Assign��cell�� �tA��cell��� assigns a work to cell� in amount of ����

and therefore the resulting workload is ���� Since this workload requires Max

capacity mode tCM��cell�� is executed to validate B	� and capacityMode�cell�� is

��

made Max� Note that the activities presented belong to work�ows having val

idation complete control
�ows� At the end of these executions� the resulting

capacityMode is Normal and current workload is equal to ���� Thus B	 is still

invalid� This is due to tA��cell�� is invalidated F� which is required for the correct

execution of tCM��cell��� �

As discussed through the preceding examples� although individual activities

of a work�ow are executed in isolation� work�ow correctness may be violated

due to improper interleavings� Thus� proper concurrency control mechanisms are

required to ensure correctness of a complete execution history� A concurrency

control mechanism can guarantee that when tj is executed Itj is true if it does

not permit any activity that falsi�es constraints in Cfti�tjg to be executed between

ti and tj for di�erent tis� Furthermore� if a basic constraint involved in Itj is inval

idated by a previously executed activity� execution of tj should be delayed until

this basic constraint is satis�ed again by the activities of corresponding validating

set� Revalidation of a basic constraint can be ensured by the validation complete

ness property� and guaranteeing correctness of input conditions of activities in a

validating set�

Extensional constraints �i�e�� G�tj�� involved in the input condition of an ac

tivity may be falsi�ed by the activities which are terminated even before the

beginning of work�ow in which tj participates� and remain invalid for an un

certain time� Therefore� ensuring their validity like inter
activity or basic con

straints through a concurrency control mechanism is not possible� A possible

way to achieve this is that� a work�ow designer places preceding activities in

��

the control
�ow to check these constraints� and if they evaluate to false either

they are validated by proper activities or tj is excluded from the execution his

tory through conditional branches� Placing CheckStock and InsertStock activities

before the WithdrawFromStock is an example to the �rst case� In this way� ex

tensional constraints can be transformed to inter
activity constraints and their

validity can be ensured like other constraints� If this design requirement is not

taken into consideration by work�ow designers� activity itself should verify exten

sional constraints� and if they evaluate to false� the activity should be removed

from the execution history �e�g�� by aborting it�� However� we assume that this

is ensured by the work�ow designers� thus G�tj� ! ��

The essential design requirements which provide for the correctness of a com

plete execution history of work�ows and hence must be ensured by work�ow

designers can be summarized as follows�

� Control
�ow of work�ows must be validation
complete�

� Proper inter
activity constraints must be introduced between the activities

which invalidate and later revalidate a basic constraint�

� Extensional constraints must be transformed to inter
activity constraints�

It is also possible to prevent the execution of the activity requiring the valid

ity of some extensional constraints through conditional branch statements�

when these constraints do not hold�

Using the correctness principles above� correctness of a complete execution

history can be guaranteed� Theorem ��� provides formal de�nitions of these

principles� To specify the intervals where the basic constraints are �or may be�

��

invalid� and where inter
activity constraints should be preserved at run
time in the

theorem� time intervals �TIE� are associated with the edges of a basic constraints

graph �BC�� and inter
activity constraints graph �IC� in the following�

 If E is an edge of an IC then� TIE ! �START �TIsource�E��� END�TIsink�E����

i�e�� TIE is denoted by the start of time interval associated with the source

node and end of time interval associated with the sink node of E�

 If E is an edge of a BC� and V LBC ! and then� TIE ! �START �TIsource�E���

END�TIsink�E����

 If E is an edge of a BC� and V LBC ! or then� TIE ! �START �TIsource�E���

min�END�TISi���� and Si � sink�E�� i�e�� TIE is denoted by the start of

time interval associated with the source node� and minimum end
point of

time intervals associated with the elements of the sink node of E� This is

due to the fact that once an activity in sink�E� is terminated� validity of a

basic constraint is ensured�

Theorem
�� �Correctness of a Complete Execution History� Let CH !

�TCH � ECH � LCH� be a complete execution history de�ned over a set of com

plete executions CE ! fCE�� CE�� ���� CEng� where CE�� CE�� ���� CEn are gen

erated from a set of work�ows W ! fW��W�� ����Wmg having validation complete

control
�ows� Wi � W is represented as Wi ! �Ni� CFi� DFi� ICi� BCi�� where

ICi ! �VICi� EICi � LICi�� and BCi ! �VBCi � EBCi � CLBCi � V LBCi�� CH is correct

if the following conditions hold�

��

��� Ststart�fCH � j! B�

�	� ��Wi � W� �E � EBCi � �tx � base�TCH�� � �TIE � ��xfTItx j �CLBCi�E� �

Itxg� ! ���

�
�a� ��Wi � W� �E � EICi � �tx � base�TCH�� � �TIE � ��xfTItx j Preserve�tx�

LICi�E�� ! �g� ! ���

�
�b� ��Wi � W� �E � EICi � �tx � base�TCH�� � ���Preserve�tx� LICi�E�� !

���� � �TIE � TItx �! ��� � �Stend�tx� j! LICi�E���� �

In the following� these conditions are explained to clarify them�

��� Basic constraints �i�e�� B � �iBi� where Bi � B� should hold when com

plete execution history �CH� is started �i�e�� when its �rst activity� fCH � is

started��

�	� If E ! htj� V S ! ftk� tl� ���g� CLBCi�E� ! �Bn� V LBCi�E� ! and�ori is an

edge in BCi �where BCi a basic constraints graph of a work�ow Wi � W ��

and if �CLBCi�E� ! Bn is involved in the input condition of another activity

tx �i�e�� Bn � Itx�� time intervals associated with E �TIE� and tx �TItx�

should not intersect�

�
�a� If E ! htj� ftk� tl� ���g� LICi�E� ! Fi is an edge in ICi �where ICi is an

inter
activity constraints graph of a work�ow Wi � W �� and if another

activity tx falsi�es F �i�e�� Preserve�tx�F� ! ��� time intervals TIE and

TItx should not intersect�

��

�
�b� If E ! htj� ftk� tl� ���g� LICi�E� ! Fi is an edge in ICi� and tx may falsify F

�i�e�� Preserve�tx�F� ! ����� F should be still valid when tx is terminated�

Notice that� if tx does not participate in CH �e�g�� by removing it from

CH�� this condition automatically holds�

Proof� To prove this theorem� we show that if the conditions stated in Theorem

��� are true� the conditions in the de�nition of a correct complete execution

history �i�e�� De�nition ����� hold�

��� As a �rst step� it is proved that ��t � base�TCH�� � �Ststart�t� j! It� is true�

Assume that �
tx � base�TCH�� � �Ststart�tx� �j! Itx�� To achive this� at least

one of the conditions below should hold�

 Ststart�tx� �j! Bi� where Bi � B�tx��

 Ststart�tx� �j! Fj� where Fj � Cin�tx��

 Ststart�tx� �j! Gk� where Gk � G�tx��

Remember that the constraints constituting an input condition are the el

ements of B�tx� � Cin�tx� � G�tx� �Formula ������ Trivially� Condition �

of Theorem ��� prevents �rst case� second case is not possible due to Con

ditions ��a and ��b� It is guaranteed that the last case does not occur by

work�ow design�

�	� In this step� it is proved that �Ststart�fCH � j! B� � �Stend�lCH� j! B� holds�

First part of the formula is true by assumption �i�e�� Condition � of Theorem

����� Assume that Stend�lCH � �j! B� to achieve this Otx �� B should hold for a

��

tx � base�TCH�� In this case� however� activities of an and or
validating set

are present inCH due to validation completeness property �De�nition ������

It has been already proved that validity of input conditions of activities in

a validating set are guaranteed� Thus� B is certainly validated prior to the

termination of CH by these activities�

Thus� if the conditions of Theorem ��� are true� correctness of the complete exe

cution history� CH is guaranteed� �

��

CHAPTER �

CONSTRAINT BASED CONCURRENCY

CONTROL 	CBCC
 MECHANISM

In this chapter� a Constraint Based Concurrency Control �CBCC� mechanism for

work�ows based on the correctness notion developed in Chapter � is proposed�

and the important issues relevant to its implementation are given�

In Chapter � it is shown that� if the conditions of Theorem ��� hold� cor

rectness of a complete execution history of work�ows is guaranteed� Validity

of these conditions can indeed be guaranteed through a Constraint Based Con�

currency Control mechanism to control activity interleavings in such a way that

inter
activity constraints are preserved and accesses to work�ow environment on

which the basic constraints do not hold are prevented� In this mechanism� ac

tivities acquire and release locks on inter
activity and basic constraints in two

di�erent modes� and certain inter
activity constraints are evaluated within an

activity� To achieve this� CBCC mechanism employees three stages for the exe

��

Table ���� The Lock Compatibility Table for Inter
activity and Basic Constraints�

Existing

Requested

Y

N

Mode

N

Y

Lock Compatibility Table
Inter-activity and Basic Constraints

Long-term

Short-term Long-term

Short-term

cution of an activity� ��� Locking stage before the actual execution of an activity�

��� Certi�cation �evaluation� stage before the actual termination of an activity�

��� Lock releasing stage after an activity terminates� Activities acquire locks on

the relevant constraints in the locking stage by issuing lock requests to CBCC

mechanism� The lock compatibility table for inter
activity and basic constraints

is given in Table ���� "Y" means that the locks do not con�ict and "N" means

the locks con�ict�

An inter
activity constraint F can be locked by an activity tx in one of the

following modes�

� Long�term� This mode of lock is acquired when tx intends to preserve F

until a set of other activities terminate� i�e�� F � Cout�tx��

� Short�term� This mode is used when tx falsi�es F � i�e�� Preserve�tx�F� !

�� All inter
activity constraints in a work�ow management system which

are falsi�ed by tx constitute the set F �tx�� Note that not only inter
activity

constraints within a work�ow in which tx resides� but also all inter
activity

constraints of other work�ows are considered for this set�

If F is to be preserved in the interval between activity tj and a set of activities

��

ftk� tl� ���g� and if another activity tx that falls in this interval falsi�es F � tx should

be delayed until F is unlocked by the every activity in ftk� tl� ���g� Therefore�

the long
term lock taken by tj con�icts with the short
term lock taken by tx�

as indicated in Table ���� Furthermore if F is to be preserved in the interval

between activities tj and ftk� tl� ���g� and again F is to be preserved in another

interval between tm and ftn� to� ���g� both tj and tm lock F in long
term mode and

clearly there is no need for these long
term locks to be in con�ict� as indicated in

Table ���� Note that long
term locks are released by successor activities although

short
term locks are released by the activities that acquire them� Thus these two

lock types are named according to the duration of the corresponding locks�

It should be noted that some of the inter
activity constraints may be falsi�ed

by tx� i�e�� Preserve�tx�F� ! ���� which constitute the set LF �tx�� For the

activities that may falsify inter
activity constraints� we prefer to use an optimistic

scheme rather than locking with the intention of increasing the performance�

since there is a probability that the activity will not falsify these constraints� If

a constraint in this set is already locked in long
term mode to be maintained

when tx is executed� this constraint is evaluated in the certi�cation stage and if

it evaluates to false� tx is rolled back and resubmitted to work�ow management

system�

A basic constraint B can be locked by tx in one of the following modes�

� Short�term� If tx requires the correctness of B� i�e�� B � B�tx�� a short

term lock is acquired�

� Long�term� If tx invalidates �or may invalidate� B� i�e�� B � ��V SSBftx�V S�and�

��

org�� a long
term lock is required�

An activity tx �may� falsify a basic constraint B to be revalidated by the activities

of and or
validating sets as explained in Chapter �� Therefore the activities that

require the correctness of B in this interval should not be allowed to execute�

For this reason� tx obtains a long
term lock or a number of long
term locks on

B which will be explained in Section ������ On the other hand the activity that

requires the correctness of B acquires a short
term lock� The short
term lock

con�icts with the long
term lock as indicated in Table ���� It is clear that the

activities that require correctness of B do not con�ict with each other�

When CBCC mechanism receives a lock request for a constraint� it ensures

that this request is compatible with all currently granted locks according to the

compatibility table presented in Table ���� If this test succeeds� CBCC mechanism

grants the lock and places it in the active �granted� lock set� If the test fails� the

mechanism places the request in the queue �rejected lock set� to be retried later�

Overall picture is presented in Figure ���� The scheduler determines whether

an activity can be scheduled according to the control
�ow information� In ad

dition� it sends relevant lock requests to the CBCC mechanism� Once the locks

are granted the activity may proceed further� otherwise it is blocked� A sched

uled activity is submitted for execution to the activity agent� and agent noti�es

the scheduler about the signi�cant events of the activity �e�g�� start� terminate�

���� Because of the assumption stated earlier� we rely on the concurrency control

mechanism of Local RMs to guarantee the correct and isolated execution of an

activity�

��

Rejected Lock Req.s

Granted Lock Req.s
1F

2F

B1

B2

CONSTRAINTS LOCK TABLE

(CBCC)

Constraint Based

Mechanism
Concurrency Control

Scheduler

Local RM

Activity
Agent

Acknow./
Result

Release
Lock Request/

Granted/
Rejected

Submit

Events Actions

Figure ���� Execution Model for Activities�

��� CBCC Algorithms

In this section� the algorithms employed by CBCC mechanism� namely Algo�

rithm for Activity Start �Algorithm ��	�� Algorithm for Activity End �Algorithm

��
�� and Algorithm for Activity Post�Processing �Algorithm ���� are described� In

these algorithms� data structures IC ! �VIC � EIC� LIC�� BC ! �VBC � EBC � CLBC �

V LBC� for every work�ow� and B�tx�� F �tx�� LF �tx� for every activity are re

quired� A Constraint Editor in conjunction with a �rst
order constraint speci�

cation language ���� ��� can be used by a work�ow system administrator and or

work�ow designers to de�ne these data structures�

����� Algorithm for Activity Start

Any activity tx needs a short
term lock for every inter
activity constraint it fal

si�es to start �Steps 	�
 of Algorithm ��	�� This is possible only when there is no

other activity that has a long
term lock on F � in other words no other activity

��

wants to preserve F � Furthermore� tx also needs to acquire short
term locks for

all the basic constraints involved in its input condition �i�e�� B�tx�� �Steps ����� A

lock for a constraint B in B�tx� is granted to tx if there is no invalidating activity

that has a long
term lock on B� After this step� every inter
activity constraint

emanating from tx in the inter
activity constraints graph �IC� �i�e�� elements of

Cout�tx�� are locked in the long
term mode in Steps ���� tx can acquire a long

term lock on F � Cout�tx� if no other invalidating activity for F has a short
term

lock on F � Recall that F may be incident to more than one activity� and these

activities are grouped into a hyperSet S�tx�F�� This is represented by the edge

htx� S�tx�F��Fi in IC� Since F should be preserved until the termination of all

the activities in the hyperSet S�tx�F�� it is necessary to obtain a long
term lock for

each of the activities in this set� i�e�� size�S�tx�F�� locks are acquired� A con�icting

lock can then only be allowed when all these locks are released� In Steps ��	��

long
term locks are acquired on the basic constraints which are invalidated by tx

which is only possible if there are no short
term locks on B� That is� since tx is

invalidating B� there should not exist any activity that requires the correctness of

B� If V S is an and
validating set for B and if it contains more than one activity�

tx acquires a long
term lock on B for each activity of V S� that is the number of

locks acquired is size�V S�� If V S is an or
validating set� tx acquires a single lock

since the termination of the �rst activity of V S guarantees validity of B�

Inter
activity constraints which may be falsi�ed by tx� i�e�� LF �tx� are handled

in an optimistic manner� Note that all the constraints in LF �tx� may not be

active� that is� it may be the case that for some constraints in LF �tx�� there is no

activity requiring these constraints to hold� We include all the active constraints

��

in ActiveICS set and all the constraints in this set are already locked in the

long
term mode� The intersection of LF �tx� and ActiveICS sets gives us the

set of constraints denoted as ALF �tx�� that are both active when tx has started

and also has to be validated when tx terminates �Step 		�� Since new long

term locks can be acquired on the elements of LF �tx� � ActiveICS by other

activities before the activity terminates� constraints in PLF �tx� ! LF �tx� �

ActiveICS �i�e�� non
active constraints which are in LF �tx�� are locked in short

term mode� Furthermore� operations in Step 		 are executed atomically �i�e�� in

a critical section�� In this way� further constraints that may be falsi�ed by tx are

prevented from becoming active after the set of constraints that will be validated

are determined�

Algorithm ��� �Algorithm for Activity Start�

begin
	� for every F � F �tx� do

� Short�termLock�F��
�� for every B � B�tx� do
�� Short�termLock�B��
�� for every F � Cout�tx� do
�� Long�termLock�F� with Counter ! size�S�tx�F���
�� for every B � ��V SSBftx�V S�andg� do
�� Long�termLock�B� with Counter ! size�V S��
�� for every B � ��V SSBftx�V S�org� do
	�� Long�termLock�B��

		�

�
����

ALF �tx�� �LF �tx� � ActiveICS��
PLF �tx�� �LF �tx�� ActiveICS��
for every F � PLF �tx� do

Short�termLock�F�

�
����

end

�

After successfully acquiring all the necessary locks as indicated in the Algo�

rithm ��	� an activity can be scheduled for execution through activity agent�

���

����	 Algorithm for Activity End

An activity terminates when all of its operations are complete� But prior to

termination of an activity� a certi�cation �evaluation� algorithm �Algorithm ��
�

is executed to check whether an active inter
activity constraint is falsi�ed by the

execution of this activity� This is achieved in Step 	 by evaluating the constraints

in ALF �tx� in parallel by the routine EvalInParallel� once a constraint evaluates

to false� EvalInParallel terminates immediately and returns false� In this case�

the activity tx is rolled backed and resubmitted to work�ow management system�

Note that all the locks acquired by tx should be released� If ALF �tx� is empty

which means that there are no inter
activity constraints that may be falsi�ed by

tx� Algorithm for Activity End is not executed�

Algorithm ��	 �Algorithm for Activity End�

begin
	� if �EvalInParallel�ALF �tx�� ! false� then

begin

� Rollback�tx��
�� Resubmit�tx�

end
end

�

����
 Algorithm For Activity Post�Processing

After an activity tx is terminated� all locks acquired by tx on the constraints in

PLF �tx�� F �tx�� and B�tx� are released in Steps 	�
� ���� and ��� of Algorithm

��� respectively� Inter
activity constraints incident to tx �i�e�� elements of Cin�tx��

which are locked by other activities are released in Steps ���� If tx is in an and

���

validating set �V S� of a basic constraint B� one of the previously acquired long

term locks by the invalidating activity of B is released in Steps ��	�� If tx is the

�rst terminating activity of an or
validating set� a corresponding lock is released

at the end of Algorithm ���� Notice that to allow waiting activities to execute as

soon as possible� steps of Algorithm ��� can be executed in parallel�

Algorithm ��
 �Algorithm for Activity Post�Processing�

begin
	� for every F � PLF �tx� do

� Unlock�F��
�� for every F � F �tx� do
�� Unlock�F��
�� for every B � B�tx� do
�� Unlock�B��
�� for every F � Cin�tx� do
�� Unlock�F��
�� for every B � ��tiSBfti�V S�andg� where tx � V S or tx ! V S do
	�� Unlock�B��
		� for every B � ��tiSBfti�V S�org� where tx ! first�V S� do
	
� Unlock�B�

end

�

����� E�ects of Uncertainty on the CBCC Mechanism

Due to structural uncertainties in a work�ow de�nition� some of the activities may

not participate in the actual work�ow execution as explained in De�nition ����

Therefore previously acquired locks on some constraints that must be released by

these activities may remain inde�nitely� To handle these situations� we propose a

simple garbage lock release mechanism� If there is a possibility that an activity tx

will not participate in a work�ow execution� a simple algorithm is used to �nd a

successor activity which certainly participates in every execution� The algorithm

���

is as follows� Visit every hyperNode including tx in control
�ow graph in a top

down fashion� stop once a hyperNode with an or xor
split node is encountered�

join node of this hyperNode is responsible from releasing locks for tx in the case

that tx is not executed�

��� Correctness of the CBCC Mechanism

To prove that a complete execution history �CH� generated by CBCC mechanism

is correct we show that the conditions of Theorem ��� hold for CH� The following

properties about time intervals are used in the proof� Note that � and � denote

cover and intersect relations between the time intervals respectively�

� ��TIi � TIj� � �TIj � TIk �! ���� �TIi � TIk �! ���

� ��TIi � TIj� � �TIi � TIk ! ���� �TIj � TIk ! ���

Theorem ��� Any complete execution history �CH� generated by CBCC mech

anism is correct�

Proof�

��� Condition � of Theorem ��� holds due to the assumption�

�	� Assume that Condition � of Theorem ��� does not hold� hence TIE�TItx �! �

in CH for an edge E ! htj� V S ! ftk� tl� ���g��Bn� and�ori in BCi� and an

activity tx where Bn � B�tx� � Itx� Recall that TIE and TItx represent

time intervals assigned to E and tx in CH� The interval between the time

���

when a long
term lock on Bn is acquired with counter by tj and the time

when the last of these locks are released is denoted as TI
XL�Bn�
E in the case

where V S is an and
validating set� Same notation is used to denote the

interval between the time instances where a single lock is acquired by tj

and released by the �rst activity of an or
validating set V S� Similarly� the

interval between the time when a short
term lock is acquired and released

on Bn by tx is denoted as TI
SL�Bn�
tx � Since activities acquire locks before

they start and release after they complete� TI
XL�Bn�
E � TIE and TI

SL�Bn�
tx �

TItx� Since long
term and short
term locks on a basic constraint con�ict�

it is guaranteed that TIXL�Bn�
E � TISL�Bn�tx ! �� Yet� due to �rst property

above ��TI
XL�Bn�
E � TIE� � �TIE � TItx �! ��� � �TI

XL�Bn�
E � TItx �! ���

Furthermore� according to second property� ��TI
SL�Bn�
tx � TItx� � �TI

SL�Bn�
tx

� TI
XL�Bn�
E ! ��� � �TItx � TI

XL�Bn�
E ! ��� Observe that the right hand

sides of two formulas contradict each other� hence our presumption is false

and Condition � of Theorem ��� holds�

�
�a� We start with proving that if Preserve�tx�F� ! � then TIE � TItx ! �

is guaranteed in CH for an edge E ! htj� ftk� tl� ���g�Fi in ICi� We denote

the interval between the time when a long
term lock on F is acquired with

counter by tj and the time when the last of these locks are released as

TI
SL�F�
E � Similarly� the interval between the time when a short
term lock is

acquired and released on F by tx is denoted as TI
XL�F�
tx � Again� TI

SL�F�
E �

TIE and TI
XL�F�
tx � TItx � Since short
term and long
term locks on an inter

activity constraint con�ict� it is ensured that TI
SL�F�
E �TI

XL�F�
tx ! �� With

���

the similar observations as in Condition � of this proof� Condition ��a of

Theorem ��� holds�

�
�b� We conclude with proving that if Preserve�tx�F� ! ���� TIE � TItx �! �

implies F holds after tx is terminated� Depending on the execution se

quences of tj and tx two possibilities can occur�

� tj acquires a long
term lock on F before tx acquires a short
term

lock on F � F is certainly logged into ALF �tx� and if tx falsi�es F �

EvalInParallel �ALF �tx�� returns false and tx is removed from CH

�i�e�� rolled backed�� hence TIE � TItx ! ��

� tx acquires a short
term lock on F before tj acquires a long
term lock

on F � tj can not lock F in long
term mode after Step 		 of Algoritm

��	 and before tx terminates� since tx already locked F in short
term

mode in Step 		� Hence TIE � TItx ! ��

Thus� a complete execution history generated by CBCC mechanism is

correct� �

��� Discussion

There are several alternatives to implement a constraint based concurrency con

trol mechanism� In the following� some of these alternatives are discussed�

� Conservative� In this approach� activities that are certainly or likely to fal

sify basic and inter
activity constraints are determined in advance �i�e�� in

design
time�� and possible invalidations of inter
activity constraints and ac

���

cesses to states on which the basic constraints do not �or may not� hold

are prevented conservatively� For example� proposed CBCC mechanism

can be classi�ed into this category if activities try to acquire locks on the

inter
activity constraints which they may falsify in addition to constraints

which they certainly falsify in Steps 	�
 of Algorithm ��	� Also Step 		 of

Algorithm ��	� and Algorithm ��
 become unnecessary in this case� Since

this conservative technique is based solely on locking� we call it as the Con�

straint Locking Concurrency Control �CLCC� mechanism� In CLCC mecha

nism� constraints themselves are no longer necessary� but can be represented

through some simple data items just for locking purposes� It should also be

noted that� if such a technique is not implemented in a work�ow system� it

is possible to acquire locks manually on virtual data items using the same

principles�

� Optimistic� In this approach� activities validate their input conditions� This

requires additional operations for the veri�cation of these conditions� Opti

mistic technique is very similar to concurrency control mechanism of Con

Tract model ���� ��� which is explained in Chapter �� however the input

conditions we check are well
de�ned interms of inter
activity and basic con

straints� If input condition of an activity evaluates to false� a con�ict reso

lution algorithm can be executed to correct the input condition violation or

to relax the requirements in the input condition� An inevitable result may

be abortion of the activity and compensation of some previously terminated

activities�

���

� Dynamic�conservative� This approach is similar to the conservative approach�

yet if an activity might falsify an active inter
activity constraint� instead

of delaying it until the constraint is deactivated� a certi�cation algorithm

is executed to detect the constraint violation� If the constraint violation is

detected a con�ict resolution algorithm is executed� e�g�� performed activity

is rolled back or invalidated constraint is repaired� Note that proposed

CBCC mechanism uses a dynamic
conservative approach�

In the optimistic technique� if con�ict resolution algorithm requires rollback

of the activity this may cause �possibly cascading� compensation of previously

terminated activities which may be a very costly process ���� ���� In addition�

overhead of validation of every input condition should not be ignored� CLCC

and CBCC techniques guarantee that input condition of an activity is true when

it is executed� thus neither input condition validation nor compensation of other

activities to resolve con�icts are required in these techniques� In addition� CBCC

mechanism provides some activities to be executed and terminated if they pass

certi�cation process although these activities and consequently successor activ

ities would be blocked by the CLCC technique� Furthermore� in the optimistic

technique it is necessary to check the constraints themselves� however in CLCC

mechanism these constraints can be represented by some simple data items just

for locking purposes� In CBCC mechanism on the other hand� only the inter

activity constraints which may be falsi�ed by the activities are needed in the

validation phase�

It should be noted that� conservative and dynamic
conservative approaches

are subject to deadlocks as explained in Section ���� In Section ���� a comparison

���

of the performance characteristics of these approaches is provided�

��� Deadlocks

As indicated before� proposed CBCC and CLCC mechanisms may result in dead

locks like any other locking
based concurrency control mechanism� since activities

may be blocked inde�nitely� Therefore� special algorithms are required to handle

deadlocks� There are three well known types of methods for handling deadlocks�

prevention� avoidance� and detection and resolution �����

In this section� we explain brie�y a deadlock avoidance technique for CBCC

and CLCC mechanisms in which potential deadlock situations are detected in

advance �i�e�� in design
time� and it is ensured that they will not occur at run

time by imposing additional restrictions on the interleavings of activities� Since

concurrency control dependencies among activities are known in advance� pos

sible deadlock situations can be detected in design
time in CBCC and CLCC

mechanisms�

We use a labeled directed graph called as Generic Wait
for Graph �GWFG�

to detect possible deadlock situations at design
time through determining cycles

in it� GWFG involves activities of all work�ow types and contains two categories

of edges� namely ordering edges and wait
for edges�

� Ordering edges are introduced between two consecutive activities in a control

�ow of a work�ow� If the execution of a particular activity is forbidden

between other activities because it falsi�es an inter
activity constraint or

requires correctness of a basic constraint which is invalid between them�

���

the edges involved in the path between these activities are labeled with the

name of this activity�

� For each labeled ordering edge incident upon an activity� there is a wait�for

edge from every activity involved in the label of the edge to this activity� In

this way� if there is a possibility that an activity waits for the termination

of another activity directly or indirectly at run
time with the purpose of

acquiring a con�icting lock� this situation is represented by a wait
for edge

in GWFG�

In the following� a simple example is provided to illustrate a GWFG�

�
�
�
�

�
�
�
�

��

��
��
��
��

�
�
�
�
��

�
�
�
�

�
�
�
� b

d

f g h

ec hg

b

ea

Figure ���� A Sample Generic Wait
for Graph�

Example ��� In the GWFG of Figure ���� activities of three work�ow types are

involved� Activities whose executions are forbidden between certain activities are

placed on the edges between these activities� e�g�� e on ha� bi� g on hc� di� etc�

If an activity instance of type e is submitted between a and b� it waits for the

termination of b� thus a wait
for edge exists from e to b� Similarly� wait
for edges

from h to e� b to h� and g to d exist in GWFG� Suppose that instances of activities

in GWFG are executed in the following order� a� c� d� f � g� Since each of b� e�

���

and h wait for the termination of another one� a deadlock occurs� �

All possible deadlocks which may occur at run
time can be determined by

examining the wait
for cycles in GWFG as demonstrated in the previous exam

ple� However� a wait
for cycle in a GWFG does not always correspond to an

actual deadlock between the instances of activities involved in this cycle� We call

such wait
for cycles as phantom cycles� This is illustrated through the following

example�

��

�
�
�
�

��

��
b

dc

a

a, b

c, d

Phantom Wait-for
Cycle

Figure ���� A Sample Phantom Wait
for Cycle�

Example ��	 Consider GWFG in Figure ���� The restrictions imposed on the

interleavings of activities cause that activity pairs a� b and c� d execute sequen

tially� In other words� activities can be executed in one of the following orders�

a� b� c� d� or c� d� a� b� Since d and b can not execute between a� b� and c� d re

spectively� wait
for cycle between b and d does not correspond an actual deadlock

situation between the instances of these activities� �

The essence of our deadlock avoidance technique is to convert existing wait
for

cycles into phantom cycles in the GWFG by introducing additional constraints�

A deadlock indeed occurs at run
time i� there corresponds a non
phantom wait

���

��
a

��

�
�
�
�

��

��
��
��
��

�
�
�
�
��

�
�
�
�

b

d

f g h

ec hg

b

e

a (not e) or d (not b)
a (not h) or g (not b)

d (not h) or g (not e)

Figure ���� Addition of New Restrictions to Generic Wait
for Graph in Figure
����

for cycle in the GWFG� We explain this concept through continuing with the

example provided in Figure ���� Observe that a deadlock occurs between b� e�

and h if a� d� and g are started execution before the any one of the b� e� and

h is terminated� For example� consider the case where a and c� and later d are

started execution� If e is submitted at this moment� it waits for the termination

of b� If the execution of g is permitted at this point� a deadlock occurs� to prevent

this� g should be delayed until b terminates� Same is true if a� f � and later g are

executed� If the execution of d is permitted at this point a deadlock occurs� In

other words� executions of d or g should be prevented in the interval between a

and b until h or e terminates respectively� This situation is illustrated through

adding a new label to edge between a and b in GWFG of Figure ���� Similar

conditions hold for the intervals between d� e� and between g� h� For example�

execution of a or g should be prevented in the interval between d and e until h

or b terminates respectively� These restrictions are illustrated in Figure ����

There is a probability that addition of these restrictions to avoid a deadlock

may cause a new deadlock situation� To prevent this� the mechanism explained

���

above is applied recursively�

Additional restrictions imposed by the proposed deadlock avoidance mecha

nism on the interleavings of activities are handled by employing special algorithms

within the CBCC mechanism� In this way it is guaranteed that CBCC mechanism

provides deadlock free executions�

��	 Performance Analysis

In this section� a performance comparison of the CBCC mechanism with conserva

tive CLCC mechanism and optimistic techniques is given� Note that as explained

in Section ���� optimistic technique is similar to concurrency control mechanism

of ConTract model ���� ���� The simulation is realized in GPSS ����� In the exper

iments� average response time of a work�ow instance �avgResT ime� is measured

by averaging response times of �� work�ow instances� Response time is de�ned

as the time between the generation and termination of a work�ow instance�

Before explaining the results of the experiments� we brie�y present the simu

lation model used� In the model� a work�ow instance is assumed to be composed

of �� activities on the average� and the inter arrival
time of the activities is ����

simulation time units� The durations of activities are assumed to be exponen

tially distributed in the interval ��� ���� In the simulation� there are a total of

�� di�erent basic and inter
activity constraints in the system� It should be noted

that� the total number of constraints are kept small so that the possibility of

con�icts among activities is high� In this way� the performances of the methods

can be observed in a very high con�ict case�

For each activity� the number of constraints that should be considered �i�e��

���

locked or evaluated� is randomly chosen from the interval ���maxConstraint�

where maxConstraint denotes the maximum number of constraints per activity

and is given a priori� Afterwards� determined number of constraints are randomly

chosen among the available constraints in the system� In the CLCC mechanism�

each activity tries to obtain a lock on all of its constraints� Note that� some

of the constraints which may be falsi�ed by an activity are evaluated at the

activity end instead of being locked in the CBCC mechanism� Hence a subset

of constraints which are determined in the �rst step is selected randomly for

the evaluation purpose� The evaluation cost per constraint is taken as constant

for simplicity �i�e�� � simulation time units�� If a constraint evaluates to false the

activity is aborted and restarted later� In the optimistic technique� the constraints

determined at the �rst step are evaluated when the activity starts and once a

constraint evaluates to false the activity is aborted and preceding activities are

compensated� The result of the evaluation is randomly determined as true or

false with the probability of ��& and ��& respectively� It should be noted that

this fraction favors the optimistic technique rather than the CBCC mechanism�

because in the CBCC mechanism a small fraction of constraints goes through

the validation as opposed to all constraints in the optimistic method� Also in

favor of the optimistic technique� the compensation cost is chosen as close to the

maximum duration of just one activity� i�e�� �� simulation time units� although

in reality this cost is much higher since compensation of more than one activity

is more probable�

The graph in Figure ��� shows the average work�ow instance response times

�avgResT ime� of three techniques for di�erent maximum number of constraints

���

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1 2 3 4 5
Max. number of constraints / activity

A
vg

. r
es

po
ns

e
tim

e
/ w

or
kf

lo
w

 in
st

an
ce

Optimistic (ConTract)
Conservative (CLCC)
Dynamic-conservative (CBCC)

Figure ���� Average Response Times for Di�erent Maximum Number of Con

straints per Activity�

per activity �maxConstraint�� The experiment results can be summarized as

follows�

� All techniques provide their best avgResT imes when maxConstraint is

small� i�e�� in ��� ���

This is expected since when maxConstraint � � the probability of con�icts

among activities is low� and consequently the number of blocked or compensated

activities is small�

� When maxConstraint � �� CBCC and CLCC techniques provide better

avgResT imes than optimistic technique� For example� whenmaxConstraint

is equal to half of the total number of constraints in the system �e�g�� around

��� avgResT ime provided by the optimistic technique becomes worse than

two times of avgResT ime provided by CBCC mechanism� i�e�� ���� vs�

���� simulation time units�

The number of compensated activities increases in the optimistic technique with

���

the increasing number of constraints �maxConstraint� which implies higher rate

of con�icts� In CBCC mechanism� however� abortion of an activity does not lead

to compensation of previous activities� only the activity itself is retried later�

� When maxConstraint ! �� CBCC mechanism starts to perform better

than CLCC mechanism� For example� when maxConstraint � �� CBCC

mechanism provides approximately ��& faster avgResT ime than CLCC

mechanism�

Since not all the constraints are locked in the CBCC mechanism� the probability

of delays due to locking is lower than that of CLCC mechanism� This di�erence

becomes more visible when maxConstraint is larger�

Performance results presented indicate that the CBCC mechanism results

in lower average work�ow instance response times in almost all cases except

when maximum number of constraints that should be considered per activity

�maxConstraint� is very small �e�g�� �� or such a constraint does not exist� If

maxConstraint is small� avgResT imes provided by the compared techniques are

almost the same�

After observing that the performance of the optimistic technique is not good

in a high con�ict case� additional experiments are conducted to compare the

performances of CBCC and CLCC techniques for di�erent evaluation costs� The

graph in Figure ��� demonstrates the results obtained for di�erent evaluation costs

per constraint �evalCost� in terms of simulation time units� The maxConstraint

is selected as � and other parameters are kept the same in these experiments�

Since CLCC mechanism is not a�ected by evalCost� avgResT ime is constant for

���

0

500

1000

1500

2000

2500

3000

3500

4000

0 50 100 150 200 250

Evaluation cost

A
vg

. r
es

po
ns

e
ti

m
e

/ w
or

kf
lo

w
 in

st
an

ce

Conservative (CLCC)

Dynamic-conservative
(CBCC)

Figure ���� Average Response Times of CBCC and CLCC Mechanisms for Dif

ferent Evaluation Costs per Activity�

it� i�e�� ���� simulation time units� CBCC mechanism provides better response

times when evalCost is between � and ��� On the other hand� when evalCost

exceeds �� CLCC technique performs better� It should be noted that maximum

duration of an activity is selected as �� in the experiments� Furthermore it is

reasonable to assume that a constraint can be checked at most within the duration

of an activity� Thus CBCC mechanism provides better avgResTimes than CLCC

mechanism in all cases where a constraint can be evaluated in a reasonable amount

of time� In other cases where evalCost is large �e�g�� in overloaded systems with

very slow response time or for very complex constraints�� CLCC mechanism can

be preferred instead of CBCC mechanism�

���

CHAPTER �

CONCLUSIONS AND THE FUTURE WORK

Concurrency control aspects of work�ow systems is addressed in this work� which

is very important for some work�ow applications where mission critical operations

require the consistent view of the execution environment �����

The fundamental issue of correctness criterion speci�c to work�ow systems

is de�ned through inter
activity constraints and basic constraints by using the

semantic work�ow information available at design
time� A concurrency control

technique� namely Constraint Based Concurrency Control �CBCC� mechanism�

based on this criterion is de�ned which uses the concept of locking in conjunction

with validation with a fundamental di�erence from the database locking� the con

straints rather than data items are locked� We have shown that� with a proper

constraint locking and validation mechanism� the inter
activity constraints that

should remain valid are preserved� and the activities that need basic constraints

to hold are prevented from executing in the intervals where these constraints

do not hold� It is also possible to use a more conservative approach in which

���

the activities acquire locks instead of going through a validation phase� We call

this technique as Constraint Locking Concurrency Control �CLCC� mechanism�

These techniques are simple to implement� and the performance analysis indi

cates that the suggested techniques have better performance than an optimistic

approach based on the constraints �similar to ConTract ���� �����

Providing �exibility and preserving correctness are somewhat con�icting aims�

In the suggested techniques a work�ow designer introduces constraints to provide

for the correctness of work�ows� However when the correctness is not an issues for

parts of a work�ow� it is possible to have a more �exible system� When a work�ow

designer does not require the correctness to be preserved� some of the constraints

may not be enforced� In this respect� it is possible to apply an isolation mechanism

similar to isolation levels in databases ���� by allowing the work�ow designer to

customize the constraints graphs according to the correctness requirements of

work�ow application� For these reasons� we believe that the CBCC and CLCC

techniques have practical importance�

Our on
going and future research plans include ��� evaluating our formal

work�ow model to examine its suitability for representing dynamic changes to

the structures of running work�ow instances� ��� extending our correctness no

tion to provide the correct executions of work�ows in the presence of failures

in addition to the presence of concurrency� ��� implementing CBCC and CLCC

techniques as the correctness mechanisms for the MARIFLOW� which will be

a WFMS for the maritime industries� ��� more detailed exploration of deadlock

prevention avoidance detection
and
resolution techniques for CBCC and CLCC

mechanisms�

���

BIBLIOGRAPHY

��� S� Abitebul� and Y� Vianu� Transactions and Integrity Constraints� In Proc�
of the �th Symposium on Principle of Database Systems� �����

��� D� Agrawal� A� E� Abbadi� and A� K� Singh� Consistency and Orderability

Semantics�Based Correctness Criteria for Databases� ACM TODS� Vol� ���
No� �� September �����

��� J� F� Allen� Maintaining Knowledge about Temporal Intervals� Comm� of
the ACM� ��� ��� November �����

��� G� Alonso� D� Agrawal� and A� E� Abbadi� Process Synchronization in
Work�ow Management Systems� �th IEEE Symposium on Parallel and Dis

tributed Processing� �����

��� G� Alonso� and H�
J� Schek� Research Issues in Large Work�ow Management
Systems� In� Proc� of NSF Workshop on Work�ow and Process Automation
in Information Systems� State
of
the
Art and Future Directions� Edited by
A� Sheth� Athens� Georgia� May �����

��� P� Ammann� S� Jajodia� and I� Ray� Applying Formal Methods to Semantic�
Based Decomposition of Transactions� ACM TODS� Vol� ��� No� �� June
�����

��� I� B� Arpinar� S� �Nural� Arpinar� U� Halici� and A� Dogac� Correctness of
Work�ows in the Presence of Concurrency� In Proc� of the NGITS� ��� Next
Generation Information Technologies and Systems Conference� Israel� June
�����

��� I� B� Arpinar� U� Halici� S� �Nural� Arpinar� and A� Dogac� Formalization
of Work�ows and Correctness Issues in the Presence of Concurrency� Intl�
Journal of Distributed and Parallel Databases� to appear�

��� P� A� Attie� M� P� Singh� A� Sheth� and M� Rusinkiewicz� Specifying and
Enforcing Intertask Dependencies� In Proc� of the ��th Intl� Conf on VLDB�
September �����

���� P� A� Attie� M� P� Singh� E� Emerson� A� Sheth� and M� Rusinkiewicz�
Scheduling Work�ows by Enforcing Intertask Dependencies� Dist� Sys� En

gineering� ����� ���
���� Dec� �����

���

���� B� Badrinath� and K� Ramamritham� Semantics�based Concurrency Con�
trol
 Beyond Commutativity� In Proc� of Intl� Conf� on Data Engineering�
February �����

���� C� Beeri� P� A� Bernstein� and N� Goodman� A Model for Concurrency in
Nested Transaction Systems� Journal of the ACM� ������ �����

���� M� Benedikt� T� Gri�n� and L� Libkin� Veri�able Properties of Database
Transactions� ACM PODS ����� Montreal� Canada�

���� A� J� Bernstein� and P� M� Lewis� Transaction Decomposition Using Trans�
action Semantics� Distributed and Parallel Databases� �� ��
��� �����

���� Y� Breitbart� A� Deacon� H� J� Schek� A� Sheth� and G� Weikum� Merg�
ing Application�centric and Data�centric Approaches to Support Transaction�
oriented Multi�system Work�ows� ACM SIGMOD Record� ������ Sept� �����

���� S� Ceri� P� Fraternali� S� Paraboschi� and L� Tanca� Automatic Generation
of Production Rules for Integrity Maintenance� ACM TODS� Vol� ��� No� ��
September �����

���� P� Cousot� Modal and Logics for Proving Programs� In� J� van Leeuwen
�ed��� Handbook of Theoretical Computer Science� Elseiver� �����

���� U� Dayal� and M�
C� Shan� Issues in Operation Flow Management for Long�
Running Activities� Data Eng� Bulletin� June �����

���� U� Dayal� H� Garcia
Molina� M� Hsu� B� Kao� and M�
C� Shan� Third Gen�
eration TP Monitors
 A Database Challenge� In Proc� of SIGMOD� �����

���� W� Deiters� and V� Gruhn� The Funsoft Net Approach to Software Process
Management� Intl� Journal of Software Engineering and Knowledge Engi

neering� Vol� �� No� �� �����

���� E� W� Dijkstra� A Discipline of Programming� Prentice
Hall� Englewood
Cli�s� N�J�� �����

���� A� Dogac� E� Gokkoca� S� Arpinar� P� Koksal� I� Cingil� I� B� Arpinar� N�
Tatbul� P� Karagoz� U� Halici� M� Altinel� Design and Implementation of a
Distributed Work�ow Management System
 METUFlow� In� �����

���� A� Dogac� L� Kalinichenko� M� T� Ozsu� and A� Sheth� �eds��� Advances in
Work�ow Management Systems and Interoperability� Springer Verlag� �����

���� F� R� Drake� Intermediate Set Theory� Wiley Chichester� New York� �����

���� J� A� Ellis� and G� J� Nutt� Modeling and Enactment of Work�ow Systems�
��th Intl� Conf� on Application and Theory of Petri Nets� �����

���� A� K� Elmagarmid� �ed��� Database Transaction Models for Advanced Appli�
cations� Morgan Kaufmann Publishers� San Mateo� �����

���

���� A� K� Elmagarmid� and W� Du� Work�ow Management
 State of the Art
vs� State of the Market� In� �����

���� E� A� Emerson� Temporal and Modal Logic� In� J� van Leeuwen �ed���
Handbook of Theoretical Computer Science� Elseiver� �����

���� E� A� Emerson� and J� Srinivasan� Branching Temporal Logic� In� J� W�
deBakker� W�
P� deRoeur� and G� Rozenberg �eds��� Lecture Notes in Com

puter Science� ���� Springer Verlag� �����

���� A� Farrag� and M� T� Ozsu� Using Semantic Knowledge of Transactions to
Increase Concurrency� ACM TODS� Vol� ��� No� �� December �����

���� M� Fitting� First Order Logic and Automated Theorem Proving� Springer
Verlag� New York� �����

���� H� Garcia
Molina� Using Semantic Knowledge for Transaction Processing in
a Distributed Database� ACM TODS� Vol� �� No� �� June �����

���� H� J� Genrich� Predicate�Transition Nets� In Advances in Petri Nets� �����
Springer� LNCS ����

���� D� Georgakopoulos� M� Hornick� and F� Manola� Customizing Transaction
Models and Mechanisms in a Programmable Environment Supporting Re�
liable Work�ow Automation� IEEE Trans� on Knowledge and Data Eng��
�����

���� D� Georgakopoulos� M� Hornick� and A� P� Sheth� An Overview of Work�ow
Management
 From Process Modeling to Work�ow Automation Infrastruc�
ture� Distributed and Parallel Databases� �� pp� ���
���� �����

���� D� Georgakopoulos� M� Rusinkiewicz� and A� P� Sheth� Using Tickets to
Enforce the Serializability of Multidatabase Transactions� IEEE Transactions
on Knowledge and Data Engineering� ����� �����

���� E� Gokkoca� M� Altinel� I� Cingil� N� Tatbul� P� Koksal� A� Dogac� Design
and Implementation of a Distributed Work�ow Enactment Service� in Proc�
of Intl� Conf on Cooperative Information Systems� Charleston� USA� June
�����

���� J� Gray� The Transaction Concept
 Virtues and Limitations� In Proc� of �th
Intl� Conf� on VLDB� Cannes� France� September �����

���� J� Gray� and A� Reuter� Transaction Processing
 Concepts and Techniques�
Morgan Kaufmann Publishers� San Mateo� CA� �����

���� U� Halici� I� B� Arpinar� and A� Dogac� Serializability of Nested Transactions
in Multidatabases� In Proc� of the Intl� Conf� on Database Theory �ICDT�
���� Greece� January �����

���� T� Harder� Handling Hot Spot Data in DB�sharing Systems� Information
Systems� Vol� ��� No� �� �����

���

���� D� Harel� On Visual Formalisms� Communications of the ACM� Vol� ���
No� �� �����

���� D� Harel� et al�� Statemate
 A Working Environment for the Development
of Complex Reactive Systems� IEEE Transactions on Software Engineering�
Vol� ��� No� �� April �����

���� M� P� Herlihy� and W� E� Weihl� Hybrid Concurrency Control for Abstract
Data Types� J� Comput� Syst� Sci�� Vol� ��� No��� August �����

���� C� A� R� Hoare� An Axiomatic Basis for Computer Programming� Commun�
ACM� ��� ��� October �����

���� D� Hollinsworth� The Work�ow Reference Model� Technical Report TC��

����� Work�ow Management Coalition� December ����� Accessible via�
http� www�aiai�ed�ac�uk WfMC �

���� M� Hsu� Special Issue on Work�ow Systems� Bulletin of the Technical
Committee On Data Engineering� IEEE� ������ March �����

���� G� Kappel� P� Lang� S� Rausch
Schott� and W� Retschitzegger� Work�ow
Management Based on Objects� Rules� and Roles� In� �����

���� P� Karagoz� S� Arpinar� P� Koksal� N� Tatbul� E� Gokkoca� and A� Dogac�
Task Handling in Work�ow Management Systems� In Proc� of Intl� Work

shop on Issues and Applications of Database Technology� IADT� ��� Berlin�
June �����

���� P� Koksal� S� Arpinar� and A� Dogac� Work�ow History Management� ACM
Sigmod Record� Vol� ��� No� �� March �����

���� H� F� Korth� E� Levy� and A� Siberschatz� A Formal Approach to Recovery
by Compensating Transactions� In Proc� of the ��th VLDB Conf�� Brisbane�
Australia� �����

���� H� F� Korth� and G� Speegle� Formal Model of Correctness without Serial�
izability� In Proc� of ACM SIGMOD Intl� Conf� on Management of Data�
June �����

���� H� F� Korth� and G� Speegle� Formal Aspects of Concurrency Control in
Long�Duration Transaction Systems Using the NT�PV Model� ACM TODS�
Vol� ��� No� �� September �����

���� N� Krishnakumar� and A� Sheth� Managing Heterogeneous Multi�System
Tasks to Support Enterprise�Wide Operations� Distributed and Parallel
Databases� ��������
���� April �����

���� N� A� Lynch� Multilevel Atomicity
 A New Correctness for Database Con�
currency Control� ACM TODS� Vol� �� No� �� pp� ���
���� Dec� �����

���

���� J� Miller� D� Palaniswami� A� Sheth� K� Kochut� and H� Singh� WebWork

METEOR��s Web�Based Work�ow Management System� Journal of Intel�
Info� Sys�� ������ March �����

���� D� R� McCarthy� and S� K� Sarin� Work�ow and Transactions in InConcert�
Special Issue on Work�ow and Extended Transaction Systems� Bulletin of
the Technical Committee on Data Engineering� Vol� ��� No� �� June �����

���� P� Muth� D� Wodtke� J� WeiBenfels� G� Weikum� and A� K� Dittrich�
Enterprise�wide Work�ow Management based on State and Activity Charts�
In� �����

���� P� E� O�Neil� The Escrow Transaction Method� ACM TODS� Vol� ��� No� ��
December �����

���� M� T� Ozsu� and P� Valduriez� Principles of Distributed Database Systems�
�nd edition� Prentice Hall� Englewood Cli�s� New Jersey� �����

���� M� Reichert� and P� Dadam� ADEPTflex � Supporting Dynamic Changes of
Work�ows Without Loosing Control� Journal of Intel� Info� Systems� ������
��
���� �����

���� M� Rusinkiewicz� A� Cichocki� A� Sheth� and G� Thomas� Bounding the
E�ects of Compensation under Multi�level Serializability� Distributed and
Parallel Databases� Vol� �� No� �� October �����

���� M� Rusinkiewicz� and A� P� Sheth� Transactional Work�ow Management
Systems� In Proc� of Advances in Database and Information Systems� AD

BIS� ��� Moscow� May �����

���� M� Rusinkiewicz� and A� P� Sheth� Speci�cation and Execution of Transac�
tional Work�ows� W� Kim� editor� Modern Database Systems� The Object
Model� Interoperability and Beyond� pp� ���
���� ACM Press� New York�
NY� �����

���� F� Schwenkreis� A Formal Approach to Synchronize Long�Lived Compu�
tations� In Proc� of the �th Australasian Conf� in Information Systems�
Melbourne �����

���� P� M� Schwarz� and A� Z� Spector� Synchronizing Shared Abstract Types�
ACM Trans� Comput� Sys�� Vol� �� No� �� August �����

���� T� Sherad� and D� Stemple� Automatic Veri�cation of Database Transaction
Safety� ACM TODS� ��� �����

���� A� Sheth� D� Georgakopoulos� S� M�M� Joosten� M� Rusinkiewicz� W� Scac

chi� J� Wileden� and A� Wolf� Report from the NSF Workshop on Work�
�ow and Process Automation in Information Systems� Accessible via�
http� lsdis�cs�uga�edu activities �

���� I� Stahl� Introduction to Simulation with GPSS� Prentice Hall� �����

���

���� J� Tang� and J� Veijalainen� Transaction�oriented Work�ow Concepts in
Inter�organization Environments� Intl� Conf� on Information and Knowledge
Management� Baltimore� �����

���� J� Tang� and S�
Y� Hwang� Handling Uncertainty in Work�ow Applications�
In Proc� of �th Intl� Conf on Info� and Knowledge Engineering� CIKM����
Maryland� November� �����

���� N� Tatbul� S� Arpinar� P� Karagoz� I� Cingil� E� Gokkoca� M� Altinel� P�
Koksal� A� Dogac� and T� Ozsu� A Work�ow Speci�cation Language and its
Scheduler� In Proc� of ��th Intl� Symposium on Computer and Information
Systems� Antalya� November �����

���� H� Waechter� and A� Reuter� The ConTract Model� In� �����

���� W� E� Weihl� Local Atomicity Properties
 Modular Concurrency Control for
Abstract Data Types� ACM Trans� Prog� Lang� Syst�� Vol� ��� No� �� April
�����

���� G� Weikum� Principles and Realization Strategies of Multilevel Transaction
Management� ACM TODS� Vol� ��� No� �� �����

���� D� Wodtke� and G� Weikum� A Formal Foundation for Distributed Work�ow
Management Based on State Charts� In Proc� of �th Intl� Conf on Database
Theory� Delphi� Greece� January �����

���� D� Wodtke� J� Weissenfels� G� Weikum� and A� K� Dittrich� The Mentor
Project
 Steps Towards Enterprise�Wide Work�ow Management� In Proc�
of ��th Intl� Conf� on Data Eng�� New Orleans� Louisiana� February �����

���� D� Worah� and A� Sheth� What do Advanced Transaction Models Have to
O�er for Work�ows�� In Proc� of Intl� Workshop on Advanced Transaction
Models and Architectures �ATMA�� Goa� India� August �����

���

APPENDIX A

NOMENCLATURE

A nomenclature is provided in the appendix�

���

Table A��� Nomenclature�
Notation Meaning
S HyperSet
Si � S Si is an element of S
S��i� Element �i of S
size�S� Number of elements in S
simple�S� Set of simple elements of S
hyper�S� Set of hyperlements of S
Si�S Si is a subelement of S
base�S� Simple subelements of S
G ! �S�E� HyperGraph� hyperNodeGraph� �
level

hyperGraph� hyperNodeDAG� �
level
hyperDAG� split
join hyperNodeDAG

G�Sa� ! �Sa� ESa� The restriction of hyperNodeGraph G to
a subelement Sa�S

S�Sa Abstraction of a subelement Sa in a nested
hyperSet S

G�Sa ! �S�Sa� EG�Sa� Abstraction of a node Sa in a
hyperNodeGraph G

hSi� Sji�path A path connecting the nodes Si and Sj in
a hyperNodeDAG

�in Initial node of a hyperNodeDAG
�fin Final node of a hyperNodeDAG
�f First node of a hyperNodeDAG
�l Last node of a hyperNodeDAG
W ! �N�CF�DF� IC�BC� Work�ow
CF ! �N�ECF � L� TC� Control
�ow graph
DF ! �T�EDF � Data
�ow graph
IC ! �VIC� EIC � LIC� Inter
activity constraints graph
BC ! �VBC � EBC � CLBC � V LBC� Basic constraints graph
RM The set of resource managers involved in

a work�ow system

���

Table A��� Nomenclature �Cont���
Notation Meaning
O The set of objects of a work�ow environment
dom�o� Domain of object o
St State of the work�ow environment
St� Set of all possible states
t�St� The resulting work�ow environment state

after an activity t is applied to state St
St j! F Formula F is true for the state St
St �j! F Formula F is false for the state St
F�St� Set of states that satisfy formula F
O�F� Set of objects involved in a formula F
t ! �IP�OP�RS�WS�AS� Activity
IP �t� Set of input parameters of an activity t
OP �t� Set of output parameters of an activity t
RS�t� Set of objects read by an activity t
WS�t� Set of objects updated by an activity t
AS�t� ! �It� Ot� Speci�cation of an activity t
It Set of FOL formulas on O which constitute

the input condition of an activity t
Ot Set of FOL formulas on O which constitute

the output condition of an activity t
It Input condition of an activity t
Ot Output condition of an activity t
B Basic constraints of the work�ow system
B�t� Set of basic constraints involved in the input

condition of t
Cfti�tjg Set of constraints that should hold after ti

terminates and before tj starts
Cin�t� Set of inter
activity constraints incoming to

an activity t
Cout�t� Set of inter
activity constraints emanating

from an activity t
C Set of all inter
activity constraints in

a work�ow

���

Table A��� Nomenclature �Cont���
Notation Meaning
S�t�F� A hyperSet which an inter
activity constraint F

emanating from t is incoming to activities in
S�t�F� in IC

G�t� Extensional constraints for t
P reserve�t�F� ! � t preserves F
Preserve�t�F� ! � t falsi�es F
Preserve�t�F� ! ��� t may falsify F
SBft�V S�and�org Set of basic constraints which are �or may be�

invalidated between t and elements of V S
an element of V S

CE ! �NCE� ECE� Complete execution of a work�ow
CH ! �TCH � ECH � LCH� Complete execution history of work�ows
START �TI� Start
point of time interval TI
END�TI� End
point of time interval TI
TIi � TIj �! � Time intervals TIi and TIj intersect
TIi � TIj Time interval TIi covers TIj
TIS Time interval associated with a simple or

hyperNode S in CH
TIE Time interval in CH associated with an edge

E in BC or IC
Stevent A particular work�ow environment state

at the time instant with which the event
is associated

F �t� Inter
activity constraints which are falsi�ed by t
LF �t� Inter
activity constraints which may be

falsi�ed by t
ActiveICS Inter
activity constraints which are locked

in long
term mode
ALF �t� A set including inter
activity constraints in

LF �t� � ActiveICS
PLF �t� Passive inter
activity constraints which are

in LF �t�

���

VITA

�Ismailcem Budak Arp
nar was born in Eski	sehir� Turkey in ����� After complet

ing primary� secondary and high schools at di�erent parts of Anatolia he was

admitted to Computer Engineering Department of Middle East Technical Uni

versity �M�E�T�U��� Turkey in ����� After receiving his B�Sc� degree in ����� he

started his M�Sc� work about object
oriented databases at the same department�

The METU Object
Oriented Database �MOOD� project in which he participated

was awarded to H�usamettin Tu�ga	c Foundation Research Award ������ by the Sci

enti�c and Technical Research Council of Turkey and MOOD was demonstrated

in NATO ASI Summer School on Object Oriented DBMSs �Turkey� ������ and in

SIGMOD Conference �U�S�A�� ������ After receiving his M�Sc� degree in ����� he

started his Ph�D� work in computer science in Middle East Technical University�

Between ���� and ����� �I� B� Arp
nar worked in multidatabases� e�g�� introduced

a correctness theory and a correctness technique for nested transactions in mul

tidatabases� and work�ow management systems� e�g�� introduced a formalization

for work�ows and developed a correctness theory and the concurrency control

techniques based on this theory� namely Constraint Based Concurrency Control

�CBCC� and Constraint Locking Concurrency Control �CLCC� mechanisms� He

���

received his Ph�D� degree in November� �����

He started his professional work in Scienti�c and Technical Research Coun

cil of Turkey in ���� and involved in the several projects in Information Ser

vices Directorate and Software Research and Development Center which is lo

cated in M�E�T�U� �This center is currently associated with M�E�T�U��� These

projects include METU Object
Oriented Database �MOOD�� METU Interop

erable DBMS �MIND�� METU Work�ow Management System �METUFlow�

�METUFlow project has evolved to MARIFLOW project�� MIND was also

demonstrated in OOPSLA �U�S�A�� ����� and SIGMOD �Canada� ����� Con

ferences� �I� B� Arp
nar was with the Ayd
n Software and Electronics Company�

which is a subsidiary of Ayd
n Corp� located in U�S�A�� between ���� and �����

where he worked on design and development of command� control� and commu

nication systems� He participated in the implementation and maintenance of

Turkish Mobile Radar Complexes �TMRC� for the Turkish Air Force and in the

design of a Field Artillery Tactical Data System for the Turkish Army�

His primary research work and interests are in the areas of database sys

tems� object
oriented systems� relational and object
oriented DBMSs� transaction

management and concurrency control� advanced transaction models� distributed

databases� multidatabases� work�ow management systems� graphical user inter

face design and development� command� control� and communication systems�

He has published several papers on these topics in international computer science

journals and conference proceedings�

�I� B� Arp
nar is married and has a �fteen months old son�

���

