

ONTOLOGY-DRIVEN WEB SERVICES COMPOSITION TECHNIQUES

by

RUOYAN ZHANG

(Under the Direction of I. Budak Arpinar)

ABSTRACT

Discovering and assembling individual Web Services into more complex

yet new and more useful Web Processes is an important challenge. In this

thesis, we present techniques for automatically and semi-automatically

composing Web Services into Web Processes by using their ontological

descriptions and relationships to other services. In Interface-Matching

Automatic Composition technique, the possible compositions are obtained

by checking semantic similarities between interfaces of individual services

and considering the service qualities. In Human-Assisted Composition the

user is allowed to select service classes and instances according to a service

template from the ranked lists.

INDEX WORDS: Web Service, Process, Composition and Semantics.

ONTOLOGY-DRIVEN WEB SERVICES COMPOSITION TECHNIQUES

by

RUOYAN ZHANG

Bachelor of Arts, Beijing University, People’s Republic of China, 1988

Master of Arts, Beijing University, People’s Republic of China, 1995

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial

Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2004

© 2004

Ruoyan Zhang

All Rights Reserved

ONTOLOGY-DRIVEN WEB SERVICES COMPOSITION TECHNIQUES

by

RUOYAN ZHANG

Major Professor: I. Budak Arpinar

Committee: Hamid R. Arabnia
Amit P. Sheth

Electronic Version Approved:

Maureen Grasso
Dean of the Graduate School
The University of Georgia
May 2004

iv

DEDICATION

This is dedicated to my loving husband Chongshan, Zhang.

v

ACKNOWLEDGEMENTS

I am very thankful for the members of my thesis committee. I want to express my

thanks to Dr. Sheth for his wonderful lecture on Semantic Web and good suggestions for

my research work. Thanks to Dr. Arabnia, who impressed me deeply with his sincere

concern for his students and his review on my thesis. And finally, it is my advisor, Dr.

Arpinar, to whom I owe the most overwhelming debt of gratitude for his support and his

invaluable guidance for my thesis research.

I also would like to thank Aleman Meza Boanerges, who started the research on the

interactive approach for this project and kindly offered me detailed suggestions for my

work. I also like to thank Lin Lin who reviewed part of my work. Thanks to Angela

Maduko, Mullai Shanmuhan, and Jorge Cardoso whose talks and works benefited me a

lot.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS...v

LIST OF TABLES... viii

LIST OF FIGURES ... ix

CHAPTER

1 INTRODUCTION ...1

1.1 Motivation ..1

1.2 Contributions ..3

2 RELATED WORK ..7

2.1 Web Service Description ..7

2.2 Semantic Web Service Discovery and Composition9

2.3 Interactive and Adaptive Composition..10

2.4 METEOR-S Framework..12

3 INTERFACE-MATCHING AUTOMATIC COMPOSITION14

3.1 Modeling Semantic Web Services and Queries14

3.2 System Architecture ...17

3.3 Interface-Matching Automatic (IMA) Composition Technique21

3.4 Automatic Composition Examples..25

4 HUMAN-ASSISTED COMPOSITION ...30

4.1 Motivating Example ..31

vii

4.2 Selections for Service Class ..33

4.3 Selections for Service Instance..35

4.4 Selections for Neighboring Service...44

5 CONCLUSION AND FUTURE WORK ..47

REFERENCES ..48

viii

LIST OF TABLES

Page

Table 3.1: Profile of Wine-Searcher in DAML-S (0.9) ...15

Table 3.2: A Composite Service Query ...17

Table 3.3: Automatic Composition Algorithm ..25

ix

LIST OF FIGURES

Page

Figure1.1:A Classification of Web Service Composition Techniques3

Figure3.1: Price Ontology..16

Figure3.2: System Architecture ...18

Figure3.3: Drink and Food Ontology...20

Figure3.4: Web Services Ontology Example...21

Figure3.5: A Web Service Network Example ...23

Figure3.6: An IMA Composition Example (λ =0.3)..26

Figure3.7: An IMA Composition Example (λ =0.7)..27

Figure3.8: Food-Wine Matching Service Composition (λ =0.2).......................................28

Figure3.9: Food-Wine Matching Service Composition (λ =0.8).......................................29

Figure4.1: Travel Planner ..33

Figure4.2: Selections for Service Class ...34

Figure4.3: Selections for Service Instances ..36

Figure4.4: Region Ontology ...38

Figure4.5: Service Geography Filter ...39

Figure4.6: Profile Similarity ...40

Figure4.7: I/O Similarity Rank ...41

Figure4.8: Services Selected with Their I/O Similarity...41

Figure4.9: Candidate Services for Price Filter...43

x

Figure4.10: Selections for Neighboring Services ..45

Figure4.11: Trip Composite Service Graph...46

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

In recent years, a growing number of Web Services (WSs) have emerged as the Internet

develops at a fast rate. The Web is now evolving into a distributed device of computation

from a collection of information resources [Fensel02a]. Furthermore, the need for

composing existing WSs into more complex services is also increasing, mainly because

new and more useful solutions can be achieved. In general, this is a result of complex and

increasing user demands and inability of a single WS to achieve a user’s goals by itself.

For example, a traveler who wants to make a hotel reservation and find a French

restaurant less than three miles from the hotel may either utilize some services that s/he

knew already or try to find those services by looking it up in a keyword-based search

engine (e.g., expedia.com or google.com) or by looking it up in a WSs registry (e.g., a

UDDI (Universal Description, Discovery and Integration) registry) at present. Also,

composition of discovered services and enabling data-flow among them (e.g., the hotel

address is needed as input to a restaurant locator service) are usually done manually,

which are highly inconvenient, especially for more complex compositions.

The problem lies with the fundamental abstractions used to model WSs, and

methods to compose these services using these abstractions. In more complex examples

of scientific data exploration through service compositions, even tens or hundreds of data

2

collection services can be involved in a composition (e.g., a search involving gene

banks). In that case an automatic composition can help in reducing query formulation and

execution time enormously.

In general, there are four different dimensions for a service composition (Figure

1.1): (i) degree of user involvement in a composition specification, (ii) if the composition

is based on templates, (iii) dynamicity (i.e., adaptation) of the composition, and again,

(iv) degree of user involvement in the adaptation of the composition [Cardoso03 &

Srivastava03]. In the first dimension, a composition can be defined fully by a user

including its control and data-flow besides the individual services making the composite

service. In contrast, in an automatic composition user is not involved but system defines

control and data-flow. This is very challenging due to difficulty of mapping user needs to

a collection of correlated services where their interim outputs can satisfy each other’s

input requirements and final deliverable meets the user demands. Besides that, in both of

user-defined or automatic composition techniques either actual service instances or

service templates can be used. In the latter, the individual service instances are searched

and integrated automatically at execution time for a given plan [Chandra03]. In a

dynamic composition, the composition itself can be adapted mainly because of Quality of

Services (QoS) requirements at run-time. Also, a composition may not be defined at

design-time but can be assembled dynamically at execution time. Finally, some hybrid

methods such as semi-automatic compositions and semi-automatic adaptations are also

possible.

3

Figure 1.1 A Classification of Web Service Composition Techniques

This work aims for reducing the complexity and time needed to generate, and execute a

composition and improve its efficiency by selecting the best possible services available at

current time by automatic Interface–Matching Automatic (IMA) composition and

Human-Assisted (HA) composition of Web Services. IMA composition has no

predefined template and the user is not involved in the composition specification. In

contrast, the user is greatly involved in the HA composition specification and adaptation

based on predefined the templates.

1.2 Contributions

We developed a collection of Ontology-driven Web Services Composition techniques. In

IMA Composition Technique, the possible compositions are obtained by checking

semantic similarities between interfaces of individual services without any predefined

template and user’s involvement in specification and adaptation. An optimum

composition which can best satisfy a user’s needs considering the semantic similarity and

4

quality (or other attributes that clients might concern about) is selected. However, our

experiments show that without functionality constraints, IMA technique is more

appropriate for the information-retrieval services (i.e., not world-altering services), that

always return relatively simple results based on the user-supplied inputs [Zhang03 &

Arpinar04]. This is mainly due to the fact that Web services with the same interface could

have different functions and the difficulty of mapping of input and output parameters for

many services. There are also many earlier efforts in composition of software

components using pipe-filter methods [Mao01]. Our contribution is that we developed a

shortest-path algorithm to address a more complicated problem in which the services

might have multiple I/O (input and output) parameters. This technique can also take

Quality of Service (QoS) of WSs into account to find a highest quality (minimum cost) as

described later. Furthermore, based on the ontology techniques, we could compose

services to finish a task even the services interfaces are not exactly matched syntactically.

The complex services, such as flight booking and hotel reservation services, that the

user’s request based on not only the inputs and outputs, but also on the quality of service

(e.g., service quality rate in DAML-S 0.9), functionality, service name, geographic

regions, and possibly user profile, can not be located precisely and composed sequentially

merely considering the interfaces. As the number of various services increases, the task

of selection of an adequate service quickly becomes tedious. Therefore, new techniques

are needed to help users in finding, filtering, and composing these services.

At the beginning of service composition, a user may have a vague picture of the

composite service in his/her mind that s/he is seeking. Another possibility is that an

available composite template may not satisfy the user, who wants to add or remove some

5

tasks in the original plan if necessary. Additionally, the service selection and composition

are not only determined by the constraints on service description (e.g., interface) yet

functionality properties and the service output values to be returned at run-time. For

example, consider a trip planning service composition example. A user often prefers a

flight service that provides the cheapest flight ticket, which, however, could only be

known after comparing the output ticket prices of a set of services. Furthermore, even the

type of transportation service in the composition could be determined by the dynamic

information of other services, such as parking fee or taxi rate if s/he is considering the

trip by flight or rental car. Thus depending on requirements on service descriptions and

dynamic information supplied by the services, a customization and dynamic composition

with more human involvement may be needed for many applications. An example for this

is introduction of XOR-split in the composition for WSs whose behavior can only be

determined at run-time (e.g., price selection) and we can filter out undesired services.

The Human-Assisted (HA) Composition Technique is dedicated to applications

which require frequent human-intervention for an acceptable composition. The goal of

this technique is to build a composition pathway (i.e., map) incrementally in a customized

way. Thus in this thesis, we present a complementary technique to IMA, namely Human-

Assisted Composition Technique (HA), that guides the users for selecting proper service

instances described in DAML-S (0.9), and allows users to create a customized composite

service plan. In particular, we intend to address the following issues:

1. Exploiting Semantic Web and Web Service Ontologies to bridge the concept gaps

in interface parameters and other parts of descriptions of services. Basically there

are four types of semantics for Web Services: (i) data/information semantics, (ii)

6

functional/operational semantics, (iii) execution semantics, and (iv) QoS

semantics [Sheth03]. Our framework mainly uses the former two semantics and

intends to help users to select service classes and instances by matching service

interfaces and attributes.

2. Ranking and filtering of composable services at certain intervention points by the

user. This also considers a semantic user profile and output values for filtering

huge numbers of service instances.

3. Automatically adjusting a composite service plan by removing the uninteresting

services or adding the services suggested by the system if their I/O matches.

The thesis is organized as follows: Chapter 2 reviews the related work on Web Service

description, discovery, composition, especially automatic and interactive composition

approaches. Chapter 3 presents Interface-Matching Automatic (IMA) Composition

technique for Web Services. Chapter 4 describes Human-Assisted (HA) Composition

Technique. Chapter 5 provides the conclusion and future work.

7

CHAPTER 2

RELATED WORK

This thesis aims to generate a composite service plan out of semantically described

existing services. The Web Service composition is related to many efforts. These include

the Web Service specification, discovery, composition and execution technologies.

2.1 Web Service Description

The service specification methods help software systems to capture capabilities of WSs.

In general, these specification methods are based on either industry-oriented

standardization efforts, or academia-oriented WS ontologies. UDDI and Web Services

Description Language (WSDL) are current industry standards developed for e-commerce.

The services are described according to an XML schema, defined by the UDDI

specification and registered by the service providers along with keywords for their

categorizations. Therefore, a UDDI does not provide a semantic search rather it depends

on a predefined categorization of WSs through keywords. In complimentary roles,

WSDL and Simple Object Access Protocol (SOAP) describe WSs as a set of endpoints

(or ports) operating on messages, and a protocol for exchange of these messages between

the services respectively. Also, some industry standards have been emerging to represent

data and control-flow, and transactional properties among a collection of services.

Business Process Modeling Language, XLANG, Web Services Flow Language (WSFL),

8

and Business Process Execution Language for Web Services (BPEL4WS) can be

mentioned in this category.

The semantic approach for WS specifications includes Web Service Modeling

Framework (WSMF) in which ontology provides the terminology used by other elements

[Fensel02b]. DAML-S (recently evolved to OWL-S) specifies three main components for

each service: service-profile, process-model and service-grounding. A service profile is

the core element of a DAML-S specification, and it involves semantic descriptions of

service interfaces and functions [DAML-S Coalition03]. The process-model provides the

information of how the service works, and the service grounding describes how an agent

can access the service. Other techniques try to add semantics to existing services by

providing mappings between WSDL, UDDI definitions and domain ontologies (e.g.,

METEOR-S [Siva03 & Patil04]).

In this work, we primarily focus on the collection of inputs, and outputs for

composition and leaving pre-condition, and effect (i.e., post-condition) oriented

composition as a future work.

2.2 Semantic Web Service Discovery and Composition

Semantic WS discovery related work includes [Cardoso03], which describes how to

evaluate a degree of similarity between a service template and an actual service by

measuring the syntactic, operational, and semantic similarity. A semantically described

service needs to be efficiently discovered. Among the state-of-the-art discovery systems, the

project DReggie adds reasoning modules to carry out the semantic matching process for

9

discovering DAML described Web Services [Chakraborty01]. Unlike other discovery

approaches on the basis of WS interfaces, [Klein01] explored ways to search services

according to the functionality requirements, and proposed Process Query Language

(PQL) to search process models from a process ontology. [McIraith02] presented a

method to compose Web services by applying logical inferencing techniques on pre-

defined plan templates. This technique focuses on the process-centric description of

service as actions that are applicable in states. Semantic representations of state, actions,

goals are needed for composing services [Srivastav03].

 The main concept behind service composition is not new in computer science.

Earlier, software composition techniques aimed to find a good combination of

components that responds to the client specific requirements by matching requested

properties with provided properties. One approach for finding a suitable composition is to

delegate the responsibility for solving certain requirements posed on a component to

other components after fulfilling it partially [Sora01]. Similarly, our interface-matching

mechanism (IMA) propagates requirements (that are set of a user’s expected outputs) to

corresponding WSs in an incremental way. [Mao01] proposes a composition path, which

is a sequence of operators that compute data, and connectors that provide data transport

between operators. The search for possible operators to construct a sequence is based on

the shortest-path algorithm on the graph of operator space. However, [Mao01] only

considered two kinds of services – operator and connector with one input and one output

parameter (which is the simplest case for a service composition) and did not take

semantics into the account.

10

In the instance composition category, SWORD uses a rule-based expert system to

determine if a plan of composite service can be built out of existing services

[Ponnekanti02]. It mainly focused on the composition of information provider services

(i.e., not world-altering services), and (like [Mao01]) it does not address the input and

output mismatch problem. In our approach, services possibly have more than one input

and output parameters, and their interfaces may not match syntactically. The difficulty of

automatic composite services without pre-defined template mainly lies in the lack of

explicit way of representation of the goal of a composite service and complementary

functionality relationship between services semantically.

2.3 Interactive and Adaptive Composition

There are many efforts in industry to customize processes. Mainly three architectures are

proposed to manage inter-organizational business processes, process portal, process

vortex and dynamic trading process [Sivashanmugam03 & Sheth99].

 At present, academic approaches have been proposed to tackle the problems for

personalization and filtering of WSs based on templates. An example is a trip planner,

which is declared as a state chart, and the resulting composite services are executed by

replacing the roles in the chart by selected individual services [Benatallah02]. Template-

based composition techniques are also used in [Narayanan02], and ICARIS project

[Tosic01].

11

The Semantic Web community mainly composes the services based on the goal-oriented

inferring and planning. None of the approaches has developed a satisfactory planning

solution to the service composition so far [Srivastava03].

In [Sirin2003], users select and filter the services by using a similar matchmaking

algorithm. In [Balke2003], the services are selected by using the hard and soft constraint

standards in personalized composition.

 [Ambite2003] designs a constraint reasoning network to compute any user’s input

change and produce the corresponding outputs to optimize the schedules for the trip

based on the AI constraints reasoning technology. For a relatively fixed template, such as

trip planner, generating a predefined constraints network might be feasible in practice.

For less widely used services, it is not possible to have such as constraint a priori

network. [Gil2003] uses a very similar technique as [Ambite2003] to support users in

creating a specification of a pathway and allow users to specify abstract descriptions of

steps. Our WSs network which is explained later has a similar feature with the constraints

reasoning network except the latter only links services or functions to produce the

expected results while in WSs network all services would be connected only if their

inputs and outputs are matched.

When the composite service plan is generated, the checking and verifying of the

service logic are crucial for execution. [Cheng02] presents an algorithm that checks the

validity of the execution of services. Verification and checking of pathway of a

composite plan are parts of future work for this thesis.

12

2.4 METEOR -S Framework

The METEOR-S project by LSDIS at University of Georgia, has studied the use of

emerging Web Services and Semantic Web technologies and research, to develop

Semantic Web Service and Process specification, semantics-based Web Services

discovery, and Process Composition [Patil04b & Cardoso02& Sivashanmugam03b].

MWSAF (METER-S Web Service Annotation Framework) is designed to mark up

Web Service descriptions with ontologies and develop algorithms to match and annotate

WSDL files with relevant ontologies [Patil04]. The METEOR-S Web Services Discovery

Infrastructure (MWSDI) created a scalable infrastructure for semantic publication and

discovery of Web Services [Verma04]. A specialized ontology called the Registries

Ontology maintains the relationship between all the domain and associates registries to

them. Additionally, an algorithm has been developed to find the Web Services with

proper interfaces and operational mechanisms for workflow generation [Cardoso02 &

Cardoso03].

As part of the METEOR-S project, the MWSCF (METER-S Web Service

Composition Framework) platform specifies an activity as a semantic activity template,

then weights the overall ranking of services on the two dimensions: semantic matching

and QoS criteria matching [Sivashanmugam03].

This thesis work has benefited from the METEOR-S techniques that are

mentioned. The similarity algorithm described in Chapter 3 and Chapter 4 is partially

based on the algorithm in [Cardoso02]. In HA Composition (Chapter 4), we argue that a

semantic activity template [Sivashanmugam03] is a possible way for specification for the

HA service template and the generated composite service for execution. If a service has

13

multiple registries, we plan to utilize MWSDI to discover the appropriate services under

other names in HA (see details in Chapter 4).

14

CHAPTER 3

INTERFACE-MATCHING AUTOMATIC COMPOSITION

With the growing number of Web services, importance of composing existing Web

Services into more complex services in order to achieve new and more useful solutions is

increasing. However, in order to automatically compose new services, existing services

need to be encoded in a machine understandable form. The semantics of a service can be

described by annotating it with respect to service ontologies. The goals of automatic

composition include reducing the complexity of creating composite services as well as

choosing an optimal composition among possible options. This chapter describes the

Interface-Matching Automatic (IMA) Composition technique that aims for generation of

complex Web Services automatically by capturing user’s expected outcomes when a set

of inputs are provided; the result is a sequence of services whose combined execution

achieves the user goals [Zhang03 & Arpinar04].

3.1 Modeling Semantic Web Services and Queries

A Semantic WS is a unit of composition that can be deployed independently, and may be

subject to composition by a third party on the Web. At the same time, its interface, its

process specification (i.e., its functionality) and its relations to other services are defined,

and advertised in a machine-processable form so it can be automatically discovered,

composed, and invoked in new complex WSs. The emerging Semantic Web makes it

15

possible to specify semantics of a domain such as the terms and concepts of interest, their

meanings, relationships between them and the characteristics of the domain through an

ontology. In this work, we use DAML-S (0.9) service ontology. A service profile is the

core element of a DAML-S specification, and it involves semantic descriptions of service

interfaces and functions. Table 3.1 is a part of profile of Wine-Searcher service described

in DAML-S. In this work, we primarily focus on the collection of inputs, and outputs for

composition.

Table 3.1 Profile-Wine-Searcher in DAML-S

A composite service query can be represented in a very similar way as a service

description in DAML-S. Like DAML-S template of services, the query profile includes

<profileHierarchy: Wine-Search rdf: ID="Profile-Wine-Searcher">

<!-- reference to the service specification -->

<service: presentedBy rdf: resource="wine-searcher.owl#wine-searcher" />
<profile: has_process rdf: resource="wine-searcher-Process.owl#Wine-

Searcher ProcessModel" />

<profile: serviceName> Wine-Searcher.com</profile: serviceName>

<profile:textDescription>

Wine-Searcher helps you save money when buying wines by providing a
database of regularly updated wine merchants' price list. Our site
provides the fastest and easiest way to find who is selling a wine, to
compare prices between wine retailers, and to value wines.

</profile:textDescription>

<!-- specification of quality rating for profile -->

<profile: qualityRating>

<profile: qualityRating rdf:ID="wine-search-Rating">
<profile: ratingName>very good</profile: ratingName>
<profile: rating rdf:resource="owl-s/1.0/Concepts.owl#GoodRating">

</profile: QualityRating>

<!-- specification of service Input and Output -->

<profile: hasInput rdf:resource="Service-Concept.owl#wineName" />
<profile: hasInput rdf:resource="Service-Concept.owl#wineVintage" />
<profile: hasInput rdf:resource="Service-Concept.owl#merchantLocation" />
<profile: hasOutput rdf:resource="Service-Concept.owl#winePrice" />

</profileHierarchy: Wine-Search Service>

16

the description of the composite service and the interface of the expected composite

service, in which we define the output parameters, output constraints, input parameters,

and the constraints. The output constraint specifies the requirements on the outputs by the

user, such as the properties of the output parameter. For example, the user can define the

price properties, currency as Franc as shown in the price ontology (Figure 3.1).

Figure 3.1 Price Ontology1

The second part of the query is about the functionality of the composite service (we will

investigate this in the future). The user can partially specify how the composite service

works and what kind of individual services would be expected to be included (constraints

and functionality parts are omitted in the Table 3.2 for brevity). For example, a restaurant

owner may want to find matching wines to the meals in a restaurant and learn the prices

1 http://sf.us.agentcities.net/ontologies/price.jpg

17

of these wines. S/he specifies a seafood for Food-Wine-Matching service and expects the

prices and name of matching wines.

Table 3.2 A Composite Service Query

3.2 System Architecture

The system architecture (Figure 3.2) involves three components (i) composer component,

(ii) ontology and service storage component and (iii) extraction component. The service

storage component hosts the user profile, Web Service network, Web Service ontology,

and domain ontologies. User profile records the history of each user’s usage of Web

Services. The service instances can be ranked based on the frequency (i.e., popularity) of

this Web Service usage.

Ontology component includes domain ontologies (in OWL) are specialized for

description of parameters of the services. For example, Figure 3.3 depicts the ontology

for food and drink that specifies the sub classes and super class relationships of the

entities and properties. Wine is the subclass of the Alcohol that is the subclass of Drink.

The properties of Wine include wine name, vintage, merchant location and price, etc. The

<Query: QueryName> Wine Price</profile: serviceName>

<!-- specification of quality rating for query -->

<Query: qualityRating>

<profile: qualityRating rdf:ID="Query-Rating">
<profile: ratingName> average </Query: ratingName>
<profile: rating rdf:resource="owl-q/1.0/Concepts.owl#GoodRating">

</Query:QualityRating>

<!-- specification of service Input and Output -->

<Query: hasInput rdf:resource="Service-Concept.owl#seafood/Food"/>
<Query: hasOutput rdf:resource="Service-Concept.owl#wineName/Wine"/>
<Query: hasOutput rdf:resource="Service-Concept.owl#winePrice/Wine
 <daml:Restriction daml:onProperty rdf:resource=Franc">
 </daml:Restriction>

18

user can specify the properties of Wine in query and limit the range of the properties as

described in query format (Table 3.2).

Figure 3.2 System Architecture
(Future components are included in dashed boxes)

Like domain ontologies, a Web Service ontology describes service hierarchy relationship

and a subclass of a service inherits the properties and functionality of its super class

service and extends with its own attributes (Figure 3.4). The Web Service network is a

collection of services that are connected each other if their interfaces are matched

semantically and it is built for service automatic navigation to improve the efficiency of

composition algorithm (Figure 3.5)

Query Parser

DAML-S
Services

UDDI Registry

DAML-S to UDDI
Translator

Services in
UDDI

Process Ontology

Domain Ontology

Web Service Ontology

Service Ontology
Manager Service Extractor

Service Descriptions

User

Service
Composer

Service
Execution/
Monitor

User profile history Ws network

Service
Finder

19

The Query Parser parses the query and sends one query object to Service Finder, which

does a search for a sequence of services by navigating Web service Ontologies and Web

Service network and it returns a composite service with the optimal graph to Service

Composer. A Service Composer generates the data flow chart of a composite service and

sends the plan to Service Execution Monitor which is not implemented yet.

When a service provider sends a registration request, a Service Extractor extracts

service name (including it ID), text description, instance/of relationship, input/output

information, etc from the service profile and stores them in a services database. With

regards to Web Service ontology, the Service Ontology Manager updates the Web

Service Network by connecting its parameters to compatible services. This helps in

reducing complexity of searching for services in an automatic composition as mentioned

earlier. If the services are described in UDDI schema, their profiles would be sent directly

into a UDDI registry. The DAML-S to UDDI translator is responsible to translate the

information in DAML-S to the UDDI specification (this is also a part of the future work).

20

Figure 3.3 Drink and Food Ontology

Food

Seafood Poultry Meat Vegetarian

Cod

Crab

Lobster
Oyster

Salmon

Beverage

Alcoholic
Coffee

Soft Drink Juice
Beer

Wine Sports

Monkfish
Beef

Pork

Tea

Water

White
Red Blush/Bubbly

Wine Name

Vintage

Merchant Location

Price

Properties
Port

Sherry

Sparkling
Wine

Price

Location

21

Figure 3.4 Web Services Ontology Example

3.3 Interface-Matching Automatic (IMA) Composition Technique

IMA composition technique aims for generation of complex WS compositions

automatically. This requires capturing user’s goals (i.e., expected outcomes), and

constraints, and matching them with the best possible composition of existing services.

Therefore, inputs and outputs of the composite service should match the user-supplied

inputs, and expected outputs, respectively. Furthermore, the individual services placed

earlier in the composition should supply appropriate outputs to the following services in

an orchestrated way similar to an assembly line (i.e., pipe-and-filter) in a factory so they

can accomplish the user’s goals.

22

In IMA, we navigate the WS network to find the sequences starting from the user’s input

parameters and go forward by chaining services until they deliver the user’s expected

output parameters. The composition terminates when a set of WSs that matches all

expected output parameters given the inputs provided by a user is found, or the system

fails to generate such a composition of services.

The goal of this algorithm is to find a composition that produces the desired outputs

within shortest execution time and better data-flow (i.e., better matching of input and

output parameters). If service ontologies are complex and the number of services is large

this can be a challenging task. The composition starts from the service that needs one or

more of the input parameters given by the user. If this WS does not produce all of the

expected outputs, more WSs need to be found to provide the expected outputs. This

process continues until we find a sequence of WSs that will produce the expected

composition outputs from the user’s inputs.

Figure 3.5 shows an extended WS network with new relations by matching input

parameters and output parameters. Nodes represent services and edges connect services if

the output of a service can be “feed-into” the input of a service. Edges shown with dash-

lines represent parameters that are not exact match but they are semantically equivalent.

In the figure, different service outputs can feed into other service inputs. For example

service 6 requires two input parameters, one of which can be provided by either S1 or S3

and the other comes from S4.

In an example scenario, the user provides input parameter Si1 and expects the

output So9 as indicated in the graph. The composition goal is to find a shortest sequence

of services from S1 to S9. In this graph the source node SI represents the start state and

23

SF as the ending state, which are added for computing convenience. The weight of every

edge is a function of quality rate (or execution time or other QoS that are interesting to

the user) and semantic similarity value. In fact, five generic quality criteria for

elementary services: (1) execution prices, (2) execution duration, (3) reputation, (4)

reliability, and (5) availability [Zeng03]. For execution price and execution duration,

Web service providers either directly advertise the execution price and duration of their

operations, or they provide means to enquire it. The reliability is the probability that a

request is correctly responded and availability of a service is the probability that the

service accessible. We assume that the system records and calculates the availability and

accessibility after Web services send the notification to the system. Users are also

assumed to send their service reputation ranking to the system. In this thesis, we illustrate

the automatic composition algorithm using quality rate specified in DAML-S profile. In

practice, other Qos standards could be applied. Relative weights of these factors (λ) are

defined by the users as follows:

W = (1-λ) * quality rate + (λ) * similarity value.

Figure 3.5 A Web Service Network Example

1

Or

Or

So9

9

8

5

6

7

3
4

2

Si1

SF

S3i2
S3i1

SI

24

For the time being we consider four cases to check similarity (i.e., matching) of an output

and input parameter from the same ontology: (1) if they are same, their similarity is

maximal. For example, the output parameter of S1 (in Fig.3.5) exact match with the input

parameter of S3 and they have the smallest value 1.0 (2) If output parameter of the

former service is subsumed by the input parameter of the succeeding service, this is the

second best matching level, such as the output of S4 subsumes the expected output

parameter - wine price. The similarity value depends on their distance in the ontology. (3)

If the output parameter of the former service subsumes the input parameters of the

succeeding service, the properties of the parameters could be partially satisfied. That

applies to the relationship between S1 and S4. (4) When two parameters have no

subsumption relation or they are from different ontologies, such as S2-S3, the similarity

value can be obtained by using Tversky’s feature-based similarity model [Cardoso02],

which is based on the idea that common features increase the similarity of two concepts,

while feature difference decreases the similarity.

The composition algorithm aims to find the optimal collections of services

considering execution time and semantic matching of parameters. We modify Bellman-

Ford shortest-path dynamic programming algorithm to find the shortest sequence from

initial stage at node SI to the termination node SF. In a common directed graph, we

consider only one incoming edge and one outgoing edge for every node selected in the

shortest path. The difference in our graph representation is that some services need more

than two incoming edges as input parameters. Therefore, we not only record distance for

every node, but also we trace the distance of every path at every node. When all the

required input parameters are available, a service can be executed. Therefore, the distance

25

of every node is determined by the maximum value of distances of all the input

parameters. For example, S3 must have two incoming edges so a distance value of S3 is

determined by the maximum of S3i1 and S3i2 because S3 can be executed after both of

these inputs are available. In a different case, when there is more than one incoming edge

fitting for one input parameter of a service, such as either edge 3-6 or 1-6 satisfies input

of S6, we choose the minimum distance of 3-6 and 1-6 as a distance associated with input

parameter of S6.

Suppose there are N services, each service may have multiple inputs and multiple

outputs. Table 3.3 is a simplified algorithm for an optimal sequence of services.

Table 3.3 Automatic Composition Algorithm

3.4 Automatic Composition Examples

Figure 3.6 is one implementation result given Ws network in Figure 3.5. Every box

represents a service. Q is the quality rate of a service and D is the distance from start

Do times = 1 to N // in worst case, the dynamic algorithm need to update
 i distance of each service N time.

 Do i = 1 to N // check each service
Do iin = 1 to Nin // Nin is the number of inputs on service i
 Do j = 1 to N // for input iin on service I, check each other service
 Do jout = 1 to Nout // check each output of service j.

Check the output jout on service j and the input Iin on service i , to see
whether they are similar(connected), if similar, find their similarity.

 enddo (for jout)
enddo (for j)

Find the shortest distance to Iin on service I (it is the minimum of all available paths to Iin
 Enddo (for Iin)
 Find the shortest distance for service I. (if outputs of service I need all input, it is
 maximum distance of all its inputs plus its quality)
 Enddo (for I)

If all the required output have obtained, break
Enddo (for times)

26

service to this service. For generality, the input and output parameters are denoted as the

integer numbers. The smaller difference of two integers means they are more similar

semantically. Now if the input parameter of the query is the input of S1 (number 4) and

the expected output is the output of S9 (number 114) and λ is 0.3, the shortest distance

from S1 to S9 is 6.0. As we see, S 8 feeds one of the inputs of S9 rather than S6. And S6

select the input from S1 instead of S3.

Figure 3.6 An IMA Composition Example (λ =0.3)

If we change λ to 0.7 and quality rate has less weight in matching function while the

input and output parameters are held constant, the sequence with shortest distance is

27

shown in Figure 3.7. The shortest distance from S1 to S9 is 9.0. This time, S6 is the

input provider for S9 rather than S8.

Figure 3.7 An IMA Composition Example (λ =0.7)

Figure 3.8 is a practical example. Forest, Berry and WineAnswers are three Food-Wine-

Matching services that provide the matching wine given food or recipe. Wine-Searcher,

Internet-Wine and K.L.Wine return the wine prices to the user given the wine name. The

converter service can convert the dollar to Franc. Recipe-Service always presents the

seasonal recipe if the user input the food name, such as beef.

The user inputs the seafood and awaits the matching wine prices in Franc currency

as described in Query Format (Table 3.2). All of three services accept such seafood as

28

inputs. When λ is 0.2 and I/O similarity is low priority, the shortest path is Forster (A

Food-Wine matching service Wine–Search Converter. The Berry matching service

has the exact input parameter as the user’s input, and Forster takes food as input, that is

the super class of the seafood. That is regarded as a second best matching in our

algorithm.

Figure 3.8 Food Wine Matching Service Composition (λ =0.2)

When we increase λ to 0.8 and that means we place more weight to similarity degree. The

optimal sequence is shown in Figure 3.9. The shortest path is Berry (A Food-Wine

29

Matching Service) Internet-Wine –Search (for wine prices) Converter (from Dollar

to Franc). The reason is that Internet-Wines has the large value of quality rate (5), but it

has good matching degree. If we concern less about quality, Internet –Wines stands out as

the one service of the sequence. When λ is large and we pay more attention to the quality

rate, Internet-Wines is not a good choice. K,L Wine is another service that can produce

the expected result and it is adjacent to the food-matching service. The absence of the K.L

is due to low the similarity degree. The output of preceding service is Wine and K.L Wine

only accepts French Wine that is the subclass of the Wine and can’t meet the requirement.

So the similarity degree is pretty low.

Figure 3.9 Food Wine Matching Service Composition (λ =0.8)

30

CHAPTER 4

HUMAN-ASSISTED COMPOSITION

In Interface-Matching Automatic (IMA) Composition Technique, the possible

compositions are obtained by checking semantic similarities between interfaces of

individual services without any predefined template and user’s involvement in

specification and adaptation. These compositions are ranked and then an optimum

composition that can best satisfy a user’s needs is selected. The IMA technique is more

appropriate for information-retrieval services (e.g., querying wine prices, or matching

different foods with drinks), that always return relatively simple results based on the user-

supplied inputs. Complex world-altering services, such as flight booking and hotel

reservation services cannot be located precisely and composed sequentially only

considering the interfaces. This is mainly because that the user’s requests are not only

based on the inputs and outputs, but also quality of service (e.g., service quality in

DAML-S 0.9), cost (e.g., ticket price), geographic region, other service attributes and

user profile. Moreover, as the number of various services increases, the task of manually

selection of an adequate service quickly becomes a very hard task. Therefore, new

techniques are needed to help users in finding, filtering, and composing these services.

In Human-Assisted (HA) Composition Techniques, the system presents an available

composite template that includes the basic service classes and defines the control-flow

and data flow among the services. The user is allowed to add services under system or

31

remove some services in the original plan. Additionally, a dynamic service composition

can facilitate the composition plans that are not only based on the constraints on service

descriptions (e.g., interface) yet functionality properties, and service output values to be

returned at run-time, such as prices of flight booking services. Thus depending on

requirements on service descriptions and dynamic information supplied by the services, a

customization and dynamic composition with more human involvement may be needed

for many applications.

The Human-Assisted (HA) composition technique is dedicated to applications

which require frequent human-intervention for an acceptable composition. The goal of

this technique is to build a composition pathway (i.e., map) incrementally in a customized

way.

4.1 Motivating Example

Consider a user, who is planning a round trip to London, U.K. from Atlanta, GA from

May 1st to May 15th. Setting up a reasonable and affordable trip is a complex task and

finding adequate services can be time-consuming. Initially, the system displays a travel

planner for the composition (Figure 4.1).

The original travel planner provides a service composition template, which merely

consists of the service classes that need to be replaced by service instances in the later

stages of composition design. When the preferred service classes are determined, the user

can filter out the service instances through various filters and select the best service

instance based on her/his preferences.

32

The travel planner service template defines the control-flow and data-flow between

services as in Figure 4.1. The template includes Transportation_Booking_Service and

Lodging_Booking_Service, Map_Service and Event_Information_Service. The user

supplies the arrival date, departure date and destination location to the Event_

_Information_Service and Transportation_Booking_Service that feeds the arrival date

and departure date to the Lodging_Booking_Service as check-in and check-out time. The

Map_Service produces a map and driving direction from a source place to a destination,

such as a hotel. Eventually the composite service produces the Flight Booking

Confirmation, Hotel Booking Confirmation, Map and Driving Direction Information and

Event Information during this trip. Based on this template, the HA Composition tool

guides the users to reduce the number of suitable service classes and instances and

discover the service instances efficiently according to their preference. This is done

through the following procedure:

1. Selection for service classes. (Select the appropriate subclasses of the

services).

2. Selection for service instances.

3. Selection for neighboring services.

33

Figure 4.1 Travel Planner

4.2 Selections for Service Classes

Assuming a diversity of services and a vast amount of service instances, the users can’t

be expected to browse all service descriptions until an adequate match is found. Thus, the

tasks of service selection and composition have to be supported by leading to a

recommendation of a set of possible service classes and instances organized in a Web

Service Ontology. For example, before the selection of Web Service instances, the user

can opt for sub-classes of Transportation_Booking_Service. In our example,

34

Transportation_ Booking_ Service subsumes flight, train, shuttle, bus, taxi and limousine

booking services. Obviously, Flight_Booking_ Service is the most appropriate vehicle for

this long-distance trip. The HA composition tool would first list all of the subclass

services of each service in hierarchical way as in Figure 4.2 (see top-left corner). For

example, a user can click on Service 0 that represents Transportation_Booking_Service.

Similarly, Service 1 is a Lodging_Booking_Service, which subsumes the

Hotel_Reservation and Apartment_Rent_Service. Service 2 Map_Service includes

Map_Information and Map _Drive_ Information_Services (See Figure 3.4 for

corresponding Web Service Ontology Example). The Web Service classes are organized

hierarchically in Web Service Ontology and can be discovered efficiently.

Figure 4.2 Selections for Service Classes

We argue that some service classes can be removed from the composite service plan if

the user is not interested in their functions or if they are not necessary parts of the

35

composite service. For example, the user can remove the Event_Information_Service that

only needs the destination address provided by the user and has no connections or

relationship with other services in the template. For validity of the service plan, only a

service or a sequence of services that has no succeeding services existing in the

composite plan can be removed. Thus their removal does not affect the execution of other

services.

4.3 Selection for Service Instances

After the service class selection terminates, the service classes selected need to be

associated with service instances. For this purpose, we use DAML-S Profile and several

filters to discover an appropriate service instance. The HA composition tool presents the

selection interface (Figure 4.3) to the user when the service instance selection starts.

In the initial state, all of the service instances will be displayed in the box “Select a

service”, where their name and quality rate, geographic region and other basic

information are also presented. For example, hotwire.com has 6 as quality rate and its

service geographic region limited to USA (in this work we don’t focus on automatic

evaluation of quality metrics for Web Services). The HA composition tool allows the user

to filter out the appropriate services by any of the following filters or by combining them

together.

36

Figure 4.3 Selections for Service Instances

Filter 1: Service Name Filter

When the user supplies the service name in the box “Service Name”, the Service Filter

navigates in the WS file database (including DAML-S Service Descriptions in Figure

3.2) using key-word search and returns the available services with service. For example,

if we want to learn the information about “Orbitz.com” and input its name, the

Orbitz.com will be shown in the box “Select a service” on the bottom. Otherwise, an

error message would be returned if no such service exists in the database.

For the case when a service profile has more than one service name and text

descriptions and a service might have multiple registries, we can use the discovery

mechanism in METEOR-S Web Services Discovery Infrastructure (MWSDI) to discover

the service with multiple names and browse their descriptions in different registries if

registries ontologies are deployed in this system.

37

Filter 2: Service Quality Rate Filter

The services may have different quality ratings defined in DAML-S (see Table 3.1).

Therefore, a service provider may want to publish its rating within a specified rating

system, to demonstrate the quality of service it provides. Our algorithm exploits this and

returns a set of services with quality rate equal or greater than a user specified quality

rate; after that the services are shown in the “Select a service” box. For instance, when we

supply 2 (good) in the box, that means we are looking for the services with 2 (good) or 1

(excellent quality rate). We assume that these service quality rates share the same quality

rate ontology or their specifications should be comparable.

Filter 3: Geographic Region Filter

The number of services with high quality rate might still be extremely high in many cases

and some services might be little relevant to the composition even they rank top. For

example, consider the travel planner example. The Hotel_Reservation_Service whose

service region is U.S. is not an appropriate answer to a user who is looking for a hotel in

London, U.K. Similarly, the pizza delivery services are only relevant to local clients.

Therefore, it is necessary to filter the irrelevant services in terms of geographic region. A

region ontology (Figure 4.4) specifies semantic relations among different regions like

countries (e.g., U.K. is a member of Europe and Europe is part of World). The

Flight_Booking_ Service in U.K., Europe or worldwide would all be stratifying answers

to the client who requires the service in U.K. However, if the user only prefers services in

Europe, the possible results are the services with restriction in Europe or World. In this

38

way, the number of services satisfying geographic restrictions will decrease in some

extent.

Figure 4.4 Region Ontology

In our example, as the user input “UK” in the box “Service Geography”, four services

are selected and listed in the box “Select a service” shown in Figure 4.5. SkyDeals.com is

a service based on U.K and Orbitz.com, flightservice4 and WorldCome are all worldwide

services. The service quality and service geography filters can be utilized individually or

simultaneously. If they are used together, the results returned include the services that

meet both quality and geography requirements by the user.

In addition to the service quality rate and service geographic region, the same ideas

and methods could be applied for filtering of service by other properties specified in

DAML-S.

World

North America Europe Asia

UK China USA

39

Figure 4.5 Service Geography Filter

Filter 4: IOPE (Input, Output, Precondition and Effect) Similarity Filter

An essential component of the service profile is the specification of what the service

provides and the conditions that have to be satisfied for a successful result. The input

property specifies the information that the service requires to proceed with the

computation. The output properties define the result of the operation of the service. For

example, the airport location and hotel location inherit from the concept classes, such as

location or address. Also a US address can be defined as the input parameter of a Map_

Service and it is subsumed by the Address class/concept in a domain ontology.

After a user selects one Flight_Booking_Service instance and one Hotel

_Reservation_Service instance, s/he may need to find a Map_Service that will match the

interfaces of previous two services semantically. The matching step is dedicated to

finding correspondence between a service template and a service instance [Cardoso02].

40

The algorithm calculates a similarity degree, using the individual parameters and

constructs the whole profile similarity. In Figure 4.6, every pair of parameters has a

similarity degree (which is not displayed for brevity), and the whole profile degree could

be obtained by using their individual similarities. For the time being, we consider four

cases to check similarity (i.e., matching) of an output and input parameter from the same

ontology: (1) If they are same, their similarity is maximal. (2) If an output parameter of

the former service is subsumed by the input parameter of the succeeding service, this is

the second best matching level. The similarity value depends on their distance in the

ontology. (3) If the output parameter of the former service subsumes the input parameters

of the succeeding service. This is the third similarity. (4) When two parameters have no

subsumption relation or they are from different ontologies, the similarity value can be

obtained by using Tversky’s feature-based similarity model [Cardoso02]. Tverskly’s

model is based on the idea that common features increase the similarity of two concepts,

while feature difference decreases the similarity. The optimal service is the service with

highest similarity value considering the I/O similarity (Figure 4.7).

Figure 4.6 I/O Similarity

41

Figure 4.7 I/O Similarity Rank

A user selects the top ranked service such as Streetmap.co.uk as the Map_Service

instance. The tool shows I/O of every service selected (Figure 4.8)

Figure 4.8 Services Selected with Their I/O Matching

42

Filter 5: Personal Profile History Filter

The personal profile records the history of service instances used involving usage

frequency by the user. We assume that the service with highest usage frequency is most

likely to be selected in the future. If the user clicks the “Frequency Sort”, a set of services

in the box “Select a service” will be returned and sorted in descending order based on the

usage frequency by the user.

Filter 6: Price Filter

The system also allows the user to select a service based on the output value, such as

ticket price. The hotel with cheapest rate can’t be located until all the results of services

are compared after execution. If there are too many services matching this requirement,

the service invocation and comparing might be time consuming. Usually, the user can

select some service with better quality rates, good I/O matching or high frequency etc;

then sends them to the price filter for dynamic selection at run-time. For example, if the

user defines the quality rate of Hotel_Reservation_Service is greater than 2 and

geographic region is in UK, three Hotel_Reservation_Service instances returned as in

“Select a Service” box (Figure 4.9). At the design stage, the user has no clue what might

be cheapest price rate and wants to select some. The cheapest price service is known only

at execution time. If the user supplies 2 in “price filter” box, HA Composition tools

would automatically select the first two services as the candidate services and only return

the hotel reservation confirmation with the cheapest price. This is equivalent to placing

an XOR-split in the composition with two candidate services. The generated composite

path is shown in Figure 4.11.

43

Figure 4.9 Candidate Services for Price Filter

Filter 7: Process Filter

Service model tells “how the service works”, that is, it describes what happens when the

service is executed. We argue that for non-trivial services (those composed of several

steps over time), this description may be used by a service–seeking agent to perform a

more in-depth analysis of whether the service meets its needs.

For example, a traveler may want to reserve a hotel as near as possible to the

historical downtown area in Charleston, SC. A reservation service that sorts hotels in

geographic proximity to the user’s location is preferable (e.g., Travelocity.com). In

contrast, Hotel_Reservation_Service (HRS.com) has no such function. Another case is

that a user wants to search a Flight_ Booking_Service which provides flight schedule

before the credit card is charged, such as expedia.com. S/he may choose to query the

sequence of activities of the service to avoid a service like priceline.com, which charges

the credit card before providing a schedule. The difference between these two services

arises because of the order of their internal steps, although their advertised descriptions

44

may be the same or very similar. This is what we called “functionality” difference of the

service. The system navigates the registered process of services and query if the service

has the required function or the sequence of the functions. The process filter would filter

out those services that can not satisfy the requirements. However, we leave

implementation of process filter as a future work.

4.4 Selections for Neighboring Services

Given the WSs network (Figure 3.2) and one Flight_Booking_Service, a Weather_

Information_ Service accepts the outputs of Flight_Booking_Service as their inputs.

Usually it is helpful for individual travelers, but it is not included in the original service

template. The user possibly could not compose them in the final composite service

without guidance. For simplicity, the system only displays the services whose inputs can

be satisfied by the preceding service completely and do not need other services. Without

reachability constraints, the alternative services could go into a large snowball and

become an unnecessary burden to the user. Another scheme is that we can define the

distance of the services related the original service or limit the number of services in this

chain extending the process.

For example, when Orbtiz.com is selected as Flight_Booking_Service, a list of

weather services matches to the Orbitz.com in terms of geographic region and I/O

parameters would be presented for selection. If the user then chooses intellicast.com, then

the service appear to in GUI as the neighboring service as shown in Figure 4.10.The

existing template thus can be extended or modified, that is, the system recommends some

45

services that are either not defined by the user, or in the original template if the inclusion

of such services does not violate the sequence order of the original planner.

Figure 4.10 Selections for Neighboring Services

The user is guided to select service subclasses and instance for every service class in the

original template and add the necessary neighboring services described as above.

Eventually, the original template is modified according to the user’s requirements as

shown in Figure 4.11.

The generated composition is based on the original composite service template

which can be described semantically enable as MWSCF in METEOR-S. The Service

Composer replaces the service classes with service instances, adds the new neighboring

services and removes the unnecessary ones, and then sends the generated composite

service to the Service Execution Monitor.

46

Figure 4.11 Trip Composite Service Graph

47

CHAPTER 5

CONCLUSION AND FUTURE WORK

Today’s search engines and knowledge discovery tools help users to locate relevant

documents and assemble relevant knowledge for effective decision-making respectively,

and improve their capabilities continuously using semantics. Similarly, users need new

tools to help them discover and assemble services into processes for easier and better

quality workflow executions given increasing number and complexity of WSs. This

thesis illustrates IMA and HA composition techniques for semantic WSs. The main of

contribution of this thesis is explicitly ontological descriptions of service descriptions,

and finding optimal compositions in a flexible way. This also takes QoS specifications of

services to find a composition with minimal cost and highest qualities. We also

developed some filters to help users to make better service selection decisions in

composition.

However, some interesting technical problems still lie ahead. For example, users

may need to compose services based on their internal computations when their profiles

may not convey adequate semantics to differentiate them. In this context, modeling Web

Service functionalities as pre- and post-conditions and potentially state machines may

provide further improvements in Web Service compositions.

48

REFERENCES

[Ambite2003] J. Ambite, G. Barish, Craig A. Knoblock, M. Muslea, Jean Oh, and

S. Minton. Getting from Here to There: Interactive Planning and

Agent Execution for Optimizing Travel. The Fourteenth Innovative

Applications of Artificial Intelligence Conference (IAAI),

Edmonton, Alberta, Canada, 2002.

[Arpinar04] I. B. Arpinar, R. Zhang, B. Aleman and A. Maduko. Ontology-

Driven Web Services Composition. IEEE E-Commerce Technology,

July 6-9, San Diego, CA.

[Balke03] W. Balke, M. Wagner. Towards Personalized Selection of Web

Services. WWW 2003, May 20-24, 2003, Budapest, Hungry.

[Benatallah02] B. Benatallah, M. Dumas, Q. Sheng, and A. Ngu. Declarative

Composition and Peer-to-Peer Provisioning of Dynamic Web

Services. IEEE Intl. Conf. on Data Eng., San Jose, 2002.

[Cardoso02] J. Cardoso (2002). Quality of Service and Semantic Composition of

Workflows. Ph.D. Dissertation. Department of Computer Science,

University of Georgia, Athens, GA.

[Cardoso03] J. Cardoso, and A. Sheth. Semantic e-Workflow Composition,

Journal of Intel. Info. Sys., 2003.

[Chakraborty01] D. Charkraborty, F. Perich, S. Avancha, and A. Joshi. DReggie: A

49

smart Service Discovery Technique for E-Commerce Applications.

20th Symposium on Reliable Distributed Systems (SRDS). New

Orleans. October, 2001.

[Chandra03] S. Chandrasekaran, J. Miller, G. Silver, I.B. Arpinar, and A. Sheth.

Performance Analysis and Simulation of Composite Web Services.

Electronic Markets: The Intl. Journal of Electronic Commerce and

Business Media, 13(2), 2003.

[Cheng02] Z. Cheng, M. P. Singh and M. A. Vouk. Composition Constraints

for Semantic Web Services. In Proceedings of the International

Workshop Real World RDF and Semantic Web Applications 2002,

2002.

[DAML-S

Coalition03]

A. Ankolenkar, M. Burstein, et. Al. DAML-S: Web Service

Description for the Semantic Web. The First International Semantic

Web Conference, Stanford, 2001.

[Fensel02a] D. Fensel, C. Bussler. Semantic Web Enabled Web Services. 2nd

Annual Diffuse Conference, Brussels, Belgium, January 2002.

[Fensel02b]
D. Fensel, C. Bussler, Y. Ding, and B. Omelayenko. The Web

Service Modeling Framework WSMF. Electronic Commerce

Research and Applications, 1(2), 2002.

[Gil2003] Y.Gil. Interactive Composition of Computational Pathways.

http://epicenter.usc.edu/cmeportal/docs/1

[Hoschek02] W. Hoschek. Peer to Peer Grid Databases for Web Services

Discovery, Grid Computing: Making the Global Infrastructure a

50

Reality” Ed(s): F. Berman, G. Fox, and T. Hey, Nov. 2002, Wiley.

[Klein01] M. Klein, and A. Bernstein. Searching for Services on the Semantic

Web Using Process Ontologies. International Semantic Web

Working Symposium, August 2001.

[McIlraith01] S. McIlraith, T. C. Son, and H. Zeng. Semantic Web Services. IEEE

Intel. Sys. March/April 2001.

[McIlraith02] S. MaIlraith, T. C. Son. Adapting golog for composition of semantic

Web services. In Proc. KRR, 482-493.

[Narayanan02] S. Narayanan, and S. A. Mcllraith. Simulation, Verification and

Automated Composition of Web Services. 11th Intl. WWW

Conference, Honolulu, 2002.

[Palucci02] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara. "Semantic

Matching of Web Services Capabilities". The First Intl Semantic

Web Conference, Sardinia (Italy), June, 2002.

[Patil04] A. Patil, S. Oundhakar, A. Sheth, and K. Verma. METEOR-S Web

Service Annotation Framework, Proceeding of the World Wide Web

Conference, July 2004 (to appear).

[Patil04b] A. Patil. METEOR-S WEB SERVICE ANNOTATION

FRAMEWORK. (The Master Thesis, 2004)

[Ponnekanti02] S. R. Ponnekanti, and A. Fox. SWORD: A Developer Toolkit for

Building Composite Web Services. 11th WWW Conference,

Honolulu, 2002.

[Schlosser02] M. Schlosser, M. Sintek, S. Decker, and W. Neijdl. A Scalable and

51

Ontology-Based P2P Infrastructure for Semantic Web Services. 2nd

IEEE Intl. Conf. on Peer-to-Peer Computing, 2002.

[Sheth99] A. Sheth, W. M. P. Van Der Aalst, and I. B. Arpinar. Processes

Driving the Networked Economy: Process Portals, Process

Vortexes, and Dynamically Trading Processes. IEEE Concurrency

Journal, pp. 18-31, July-September 1999.

[Sheth03] A. Sheth. Semantic Web Process Lifecycle: Role of Semantics in

Annotation, Discovery, Composition and Orchestration, invited talk

at WWW 2003 Workshop on E-Services and the Semantic Web,

Budapest, Hungary, May 20, 2003.

[Sirin03] E. Sirin, J. Hendler, and B. Parsia. Semi-automatic composition of

web services using semantic descriptions. Web Services: Modeling,

Architecture and Infrastructure workshop in conjunction with

ICEIS2003, April 2003.

[Sivashanmugam

03]

K. Sivashanmugam, K. Verma, A. Sheth, and J. Miller. Adding

Semantics to Web Services Standards, Intl. Conf. on Web Services,

Las Vegas NV, June 2003.

[Sivashanmugam

03b]

K. Sivashanmugam. The METEOR-S Framework for Semantic Web

Process Composition (The Master Thesis 2003)

[Sora01] I. Sora, and F. Matthijs. Automatic Composition of Software

Systems from Components with Anonymous Dependencies,

Technical Report CW 314, Leuven, Belgium, May 2001.

[Srivastava03] B. Srivastava, J. Koehler. Web Service Composition –current

52

solutions and open problem. ICAPS 2003 Workshop on Planning for

Web Services, Trento, Italy, 10 June, 2003 .

[Tosic01] V. Tosic, D. Mennie, and B. Pagurek. On Dynamic Service

Composition and Its Applicability to E-business Software Systems.

Workshop on OO Business Sol. ECOOP, Budapest, Hungary, 2001.

[Verma04] K.Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar and

John Miller, METEOR–S WSDI: A Scalable Infrastructure of

Registries for Semantic Publication and Discovery of Web Services.

Journal of Information Technology and Management (to appear,

2004).

[Zeng03] L. Zeng, B. Benatallah, M. Dumas. Quality Driven Web Services

Composition. WWW2003, May 20-24, 2003, Budapest, Hungary.

[Zhang03] R. Zhang, I. B. Arpinar, and B. Aleman-Meza. Automatic

Composition of Semantic Web Services. Intl. Conf. on Web

Services, Las Vegas NV, June 2003.

